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Abstract
Vectorization converts raster scans of line drawings into vector graphics; it breaks the barrier between line drawing generation
and postprocessing. Prior work on line drawing vectorization considerably succeeded in revealing artists’ drawing intention
driven by structural topologies. However, none of them is able to extract simplified topologies for sketchy line drawings
consisted by many unwanted lines. In this paper, we propose an improved topology extraction approach based on artists’
sketching customs. Redundant regions and open curves are discriminated from artists’ deliberate ones and further removed
progressively through an iterative optimization mechanism. We demonstrate that our improved topology benefits our vector-
ization method as well as existing topology-driven ones and allows them to vectorize rough sketchy line drawings robustly
and efficiently.

Keywords Line drawing · Sketch · Vectorization · Topology extraction

1 Introduction

Line is an essential element of object shape information;
thus, line drawings have become a popular tool for present-
ing and communicating ideas in both scientific and design
domains. Line drawings have twomajor representations: vec-
tor graphics and raster image, either of which dominates on
the generation and usage of line drawings simultaneously.
The vector graphics provide many practical facilities such
as resolution independence, editing convenience and storage
economy, but are difficult to create as they require tuning
control points and degree parameters. On the contrary, most
artists still prefer to freehand sketching on papers to quickly
present their ideas, but lines rasterized in scanned bitmaps
can be neither edited conveniently nor stored economically.

The goal of line drawing vectorization is to automatically
convert line drawing raster bitmaps into vector graphics; it
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shortens the aforementioned gap between the generation and
usage of line drawings. The key is to find a set of paramet-
ric curves that integrally preserve the main structure of the
input line drawing. It is particularly challenging to automat-
ically clean up all redundant lines introduced by artists’ fast
and casual sketching without destroying structural details. A
redundant stroke/region could be longer/larger than a delib-
erate stroke/region; thus, it is already difficult to distinguish
them. Traditionally, artists solve this challenge by carefully
re-drawing representative lines on the top of the sketching
draft, which is tedious and time-consuming.

Lines are mixed together in the input raster bitmap; nei-
ther separating nor grouping them is possible [2,16]. On the
other hand, image simplification methods also fail to pre-
serve the main structures of the input line drawings [23],
since stroke thickness variation may lead to line connectiv-
ity breaking. Among existing vectorization methods in the
literature, topology-driven ones have made a big progress
on preserving the main structure while removing unwanted
lines. Noris et al. employ a gradient-based pixel clustering
and the minimum spanning tree to extract the topology of
line drawings, and analyze the junction continuities by a
reverse drawing procedure [18]. However, this method can
only process clean line drawings, as the topology has not been
simplified well. Favreau et al. extract skeletons by morpho-
logical dilation and thinning to construct an initialized curve
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network, and explicitly balance fidelity to the input bitmap
with simplicity of output [10]. Their hypergraph exploration
can minimize the number of curves and their degrees in the
output vector graphics, but cannot cleanup redundant regions
or strokes. In summary, the state-of-the-art methods make
use of the drawing topology, but are limited to non-qualified
topology extraction, and thus fail to vectorize rough sketchy
line drawings.

In this paper, we propose an improved topology extraction
method for vectorization of sketchy line drawings. We first
over-segment the input image using the trapped-ball algo-
rithm. Then an iterative region optimization is employed to
remove all redundant regions introduced by artists’ inaccu-
rate sketching and preserve all deliberate regions even if they
are smaller than redundant ones. Thirdly, a topological graph
is initialized by a skeleton extraction, which not only guar-
antees the curve continuity but also finds all junctions and
endpoints. This topology graph is further simplified by an
iterative open curve removal process. In the end, we pro-
pose an efficient vectorization method that makes use of our
improved topology to robustly vectorize rough sketchy line
drawings. We demonstrate the improvement of our topology
extraction on various types of sketchy line drawings. Our
contributions can be summarized as followed:

– We propose an improved topology extraction approach
that captures the main structure of sketchy line drawings
without the residual of unwanted sketching lines.

– We introduce a line drawing vectorization method that is
simple but efficient, only takes several seconds for very
rough line drawings.

2 Related work

Line drawing vectorizationLine drawing vectorization stems
from converting scanned engineering drawings to electric
diagrams; thus, early vectorization approaches focus on geo-
metric primitive recognition, such as straight lines [6,7],
ellipses [24], Bézier curves [28] and even B-splines [5].
Recognition-based methods are capable of producing com-
pact parametric curves through fitting algorithms, but the
vectorization robustness is barely guaranteed. For instance,
if lines in the input image have thickness variations, special
treatments have to be involved to against over-fitting errors,
like the layer separation in the work of Halaire and Tombre
[12,13].

Recognition-based vectorization methods are limited to
particular geometric primitives. To vectorize freeform lines,
tracking-based methods first calculate a tangential field for
the input image and then trace streamlines using line integral
convolution along this field. A number of existing direction
field estimation methods can be found, like Gabor filter [4],

tensor field [15] and non-oriented gradient field [8]. Central
streamlines can be directly traced out starting from a seed
point at the line center [1]; or as midpoints of two contour
streamlines that are traced out starting from seed points at
the line boundary [17]. For both cases, special correction
mechanisms have to be applied to avoid the accumulating
errors in the tracking stage, such as Kalman filter by Bartolo
et al. [3], 2D quadratic fitting and Runge–Kutta algorithm by
Chen et al. [9]. And Bao and Fu developed a tracing-based
line drawing vectorization method that uses cross sections to
accurately trace lines with near-constant width [1].

Stroke simplification Artists’ line drawings commonly
consist of rough strokes mixed with many redundant ones,
rather than clean strokes. The target of line drawing simplifi-
cation is to replace redundant strokes with a set of clean ones
that fully represent the original content. These representative
strokes can be found by either selecting from input ones or
grouping to have new ones. Stroke selection can be achieved
by a stroke removal process starting from the strokeswith low
priorities, which are measured by stroke properties, such as
length or density. In particular, Preim and Strothotte directly
limit the line number when generating simplified drawings
of 3D scenes [19], Wilson and Ma compute a complexity
map to control the line density in pen-and-ink illustrations
[27], and Grabli et al. introduce an image-space density com-
putation to measure the significance of 3D lines and use it
to remove strokes with low density progressively until the
reminder satisfies the user [11].

However, the representative strokes can be hardly selected
from many short ones, which are drawn with an intention of
creating a long line. In this case, grouping them is amore rea-
sonable way than selection. For this sake, Barla et al. group
lines in the original drawing into θ -groups based on geomet-
ric properties including proximity, continuation and coverage
and finally create a single line for each group [2]. And Liu
et al. point out that regions formed by lines can also highly
impact the stroke grouping [16]. They thus make use of the
Gestalt principle of closure in line drawings to determine the
grouping standard on a semantic level. Once all strokes are
grouped using an iterative cyclic refinement, each group is
then replaced by a smooth curve for the final simplification.
And Chen et al. reconstruct 2D curves from sketched strokes
through a non-oriented gradient field estimation that is robust
to different drawing styles [8].

Topology extractionAforementioned simplificationmeth-
ods require vector strokes as input; they are only suitable for
digitally created line drawings, not for paper-based line draw-
ings that are still preferred by most artists. To vectorize the
line drawings in raster images, recentmethods extract a struc-
tural topology to drive the vectorization process. Noris et al.
employ a gradient-based pixel clustering technique to com-
pute the underlying topological skeleton, and use it to solve
junction ambiguities in the vectorization stage by a reverse

123



An improved topology extraction approach for vectorization of sketchy line drawings 1635

drawing procedure [18]. However, this method can only deal
with clean line drawings.

2D skeleton, one-pixel-width medial axis of each line
drawing, is the key element of structural topology [20,22].
However, skeleton extraction methods employed by existing
line drawing vectorization approaches are noise sensitive and
structure breaking. These issues are not evident for vector-
ization of clean line drawings [18,31], but tend to introduce
large inaccuracy for vectorization of sketchy line drawings.
To process rough line drawings, Favreau et al. extract a curve
network with one-pixel-width skeleton as a drawing topol-
ogy and use it to balance between fidelity to the input bitmap
and simplicity of the output vector graphics [10]. However,
the morphological dilation and thinning in their topology
extraction inherit the inaccuracy of artists’ sketchy drawing,
as they can not clean up redundant regions or open curves.
And the subsequent hypergraph exploration in Favreau et
al.’s method can only reduce the number of Bézier curves
and their degrees, not the topology itself.

3 Overview

Figure 1 illustrates the overview of our approach. It takes a
bitmap of sketchy line drawing as input and segments this
bitmap into separated regions according to pixel color differ-
ence between strokes and background. Secondly, unwanted
regions introduced by artists’ scratchy sketching are identi-
fied and removed. Thirdly, an initial topology is estimated
through a combination of skeleton extraction and the detec-
tion of endpoints and junctions. This topology is optimized
by removing unexpected open curves and used to drive the
final vectorization method to convert the input bitmap into
high-quality vector graphics.

The core of our approach is an iterative topology sim-
plification mechanism that removes all unexpected regions
and open curves while preserving the user-intended draw-
ing structure, from Fig. 1c–e. We estimate and simplify a
topological graph based on skeleton extraction. It measures

the area, flatness, outer width and independence for back-
ground regions, and parallelism and relative distance for
open curves. These measurements are combined as a unified
framework and updated dynamically in an iterative manner.
Our approach can better identify the user-intended draw-
ing structure from unexpected regions and curves comparing
with existing methods and helps our vectorization method
achieve high-quality vector graphics for sketchy line draw-
ings robustly and efficiently.

4 Topology extraction and simplification

Our method starts with segmenting the input image to sep-
arated regions. Since strokes are roughly drawn by artists,
someof themdonot formcompletely closed regions. Inspired
by Zhang et al. [30], we employ the trapped-ball segmen-
tation method on the binary form of the input image. It
produces regions without leakages. These regions have two
types: regions covered by strokes, noted as Rs and many sep-
arated background regions, noted as Ri , i ∈ [1, N ], where
N is their total number. All background regions Ri are
dilatedwithout crossing stroke regions, to cover all remaining
unsegmented pixels [10]. Note that the trapped-ball method
over-segments most narrow background regions due to its
leakage-free nature, we will explain how to remove them in
the next subsection.

4.1 Region removal

Figures 1b and 2b show our segmentation results. Due to
the roughness of artists’ sketches, many unexpected back-
ground regions are produced around the repeated strokes,
and they are extremely difficult to distinguish from regions
with artists’ intention. Based on our observation on many
sketches and deep discussion with artists, we summarized
four hypotheses to differentiate them:

Fig. 1 Overview of our approach. a Input bitmap, b, over-segmentation, c region removal, d initial topology, e open curve removal and f our
vectorization
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Area Unexpected regions usually have small area,
as they are generated by artists’ repeated
strokes in short distances;

Flatness Unexpected regions normally haveflat shapes,
not round ones, as they are formed by adjacent
strokes with similar orientations;

Outer width Unexpected regions often havemany adjacent
strokes due to artists’ sketching redundancy,
these adjacent strokes make the boundaries of
the unexpected regions have larger width than
intended regions;

Independence Unexpected regions always appear jointly
while intended regions are more likely inde-
pendent, due to the repeatability of sketchy
strokes.

The flatness, the area and the outer width hypotheses
are constraints about every single region, while the inde-
pendence hypothesis concerns the relationships between
adjacent regions and their connected strokes. These four
hypotheses are all reasonable, but none of them is always
right in all cases. We first use the first third hypotheses as a
joint optimization function instead of individual criteria:

Φi = Fi · Ai/Wi (1)

where Fi , Ai , Wi are the flatness degree, the area and the
average outer width of the i th background region. In our
implementation, we traverse the boundary of each back-
ground region Ri as a point sequence {si, j }, j ∈ [1,mi ]
in a clockwise order, where mi is the point count of this
sequence. We then compute their normalized tangents ti, j =
normalize(si, j+1 − si, j−1), and rotate them 90◦ clockwise
to get inward normals ni, j = rotate(ti, j ). As illustrated in
Fig. 2c, we shot a ray from each boundary point si, j along
its inward normal ni, j . This ray hits the other side of the
region boundary, and we note the length of this ray as the
inner length l inneri, j for the point si, j . Similarly, we also shot
a ray along the outward normal −ni, j , note the outer length
when this ray hits another region as louteri, j for the point si, j .

We compute the right part of Eq. 1 with the inner and outer
length for each boundary point. The area of the i th back-
ground region is calculated as the average of inner length:

Ai =
mi∑

j=1

l inneri, j /mi (2)

The flatness of the i th background region is calculated as
the standard deviation of inner length:

Fi =
⎛

⎝
mi∑

j=1

(l inneri, j − Ai )
2/mi

⎞

⎠
1/2

(3)

And the outer width of the i th background region is cal-
culated as the average of outer length:

Wi =
mi∑

j=1

louteri, j /mi (4)

The background region Ri with smallΦi is regarded as an
unexpected one, as it is very flat, surrounded bymany strokes
or has a small area. We remove background region Ri and
merge all its pixels into stroke region Rs if its Φi is less than
the region threshold τr . We take τr as 0.4− 0.9 according to
the stroke number and complexity. However, we found some
of unexpected background regions were always left in our
experiments. TheirΦi are not small enough to be removed, as
they have large areas, round shapes or few strokes embraced.
And increasing the threshold τr can removemore unexpected
background regions, but will lead to remove intended ones
in the meantime.

Based on the independence hypothesis that has not been
used in Eq. 1 yet, we propose an iterative optimization that
updates Φi dynamically. In each iteration, we recompute Wi

for all background regions left from the previous iteration,
update Φi and remove regions whose updated Φi are less
than τi . We iterate this removal and updating iteration until
no more regions are removed. Wi becomes larger and Φi

gets smaller if surrounding regions have been removed in

Fig. 2 Illustration of our iterative region removal process. a Input bitmap, b initial segmentation, c inner and outer length, d iteration #1, e iteration
#2 and f iteration #3

123



An improved topology extraction approach for vectorization of sketchy line drawings 1637

Fig. 3 Illustration of skeleton extraction and topology analysis. aMerged regions, b skeleton extraction, c skeleton points, d junctions and endpoints
and e topological graph

the previous iteration; thus, our iteration optimization can
successfully removemost of unexpected background regions
without losing intended ones. Figure 2d–f shows examples
where our optimization stops in 3 iterations. And 1–4 region
removal iterations are required in most of our experiments.

4.2 Skeleton extraction

After the background region removal in the previous sub-
section, we are now ready to analyze the topology of line
drawing. The first step is to extract the skeleton of the stroke
regions. The main challenges of this step have threefold: one
is the robustness against the stroke thickness variations, the
second is the continuity of the skeleton, and the last is the
centeredness of the skeleton. Many 2D skeleton extraction
methods are proposed in the literature, but none of them
solves these three challenges simultaneously to our knowl-
edge. For instance, the iterative dilation employed byFavreau
et al. removes all open curves that have to be added back in
the postprocessing [10], and theminimum spanning tree used
by Noris et al. requires a gradient field estimation which is
inaccurate for strokes with varying thickness [18].

We propose an improved skeleton extraction based on the
pearlingmethod introduced byWhited et al. [26]. It can guar-
antee the continuity and centeredness of the skeleton and is
insensitive to the stroke thickness variations. Note there are
might several disconnected stroke regions, we explain here
how to extract the skeleton for one connected stroke region
Rs without loss of generality.

For each pixel p in the stroke region Rs , we put a cir-
cle centered at p with a growing radius. The growth will stop
when this circle meets the boundary of the stroke region ∂Rs ,
we note this radius as r(p). We then create an inspective cir-
cle at pwith a radius r(p)+2 and collect all non-stroke pixels
in this inspective circle. If the pixel p locates at the center of
one stroke, its inspective circle will cover non-stroke pixels
on both side of the stroke. If the pixel p does not locate at the
center of one stroke, its inspective circle will only cover non-
stroke pixels on one side of the stroke. Figure 3b illustrates
a skeleton point on the left and a non-skeleton point on the
right, and the yellow circle shows the maximal growing cir-

cle while the blue circle shows the inspective circle. Thirdly,
we divide non-stroke pixels in every inspective circle into
connective clusters by an 8-pixel-neighborhood connection
algorithm.As illustrated in Fig. 3b, the left point has two con-
nective clusters(red and pink) in its inspective circle, while
the right point has only one connective cluster (red) in its
inspective circle. Finally, we identify a skeleton point from
the stroke region Rs by checking whether the number of its
connective clusters C1(p) is larger than one or not:

label(p) =
{
skeleton if C1(p) > 1
non-skeleton if C1(p) <= 1

The set of skeleton points will form a fully connected
skeleton network whose width is less than 2 pixels, as shown
in Fig. 3c. To construct the whole topology, we have to
detect feature points as well, such as junctions and endpoints.
We apply the aforementioned neighborhood pixel clustering
again for each skeleton points. In order to guarantee to cover
both sides of the skeleton points, we put a circle at each
skeleton point with a radius one pixel larger than the skeleton
width (equals to 3 constantly), and check the number of con-
nective clusters for non-skeleton points in this circle C2(p).
We combine this number with C1(p) to identify junctions
and endpoints as:

label(p) =

⎧
⎪⎪⎨

⎪⎪⎩

endpoint if C1(p) > 1&&C2(p) < 2
skeleton if C1(p) > 1&&C2(p) = 2
junction if C1(p) > 1&&C2(p) > 2
non-skeleton if C1(p) <= 1

Figure 3d shows an example of our junction and endpoint
identification, green pixels are endpoints, and blue pixels
are junctions. These pixels, noted as q j , are not isolated
points, but small regions contain several pixels due to our
non-skeleton clustering method. Therefore, we first cluster
them using a simple 8-pixel-neighborhood connection algo-
rithm and compute an average position q̄ = ∑

q j∈ci q j/|ci |
for each cluster ci . Secondly, we select the pixel in this clus-
ter that is closest to each average position vi = arg min{q j ∈
ci

∣∣||q j − q̄||} to obtain the representative point for this
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Fig. 4 An example of unexpected open curves. a Input bitmap, b
regions after removal and c extracted skeleton

endpoint or junction region. Points with red frames are
the selected endpoint and junction in Fig. 3d. Our careful
junction and endpoint selection improve the robustness of
topology optimization and the accuracy of line vectorization
in the subsequent processes.

Based on the accurate feature point positions, we narrow
the skeleton to one pixel width using the depth-first traversal
and construct a topological graph G = 〈V , E〉, where V =
{vi } represents the set of all junctions and endpoints, and E =
{ei } represents the set of all edges consisted of skeleton points
among vi . Figure 3e illustrates an example of our topological
graph.

4.3 Open curve removal

Though we have removed unexpected background regions,
the extracted topological graph still contains many unex-
pected open curves. Open curves are defined as edges
connecting to endpoints in the topological graphG, and other
edges that only connect to junctions on both sides are called
closed curves. Many prior works decide the reservation of
the open curves according to their length. However, length
hypothesis is not always true. Figure 4 illustrates such a
counterexample; the long open curve ’A’ should be removed,
while the short open curve ’B’ should be preserved. In this
paper, we improve the open curve selection by parallelism
and relative length measurements instead of the absolute
length. Firstly, open curves that are parallel to their adja-
cent closed curves are more likely to be produced by artist’s
casual scribbling and should be removed. We use the Haus-
dorff distance to depict this parallelism hypothesis:

Hausdorff(ei , e j ) = maxsmint |pi (s) − p j (t)| (5)

where pi (s) and p j (t) are parameterized points in edges ei
and e j separately, and ei and e j include all edges in the
topological graph G. Equation 5 first calculates the min-
imal Euclidean distance from point pi (s) in the edge ei
to all points in the edge e j , and then takes the maximal
distance for all pi (s) as the Hausdorff distance. Note that
Hausdorff(ei , e j ) �= Hausdorff(e j , ei ) as the maximum and
minimum computations are not interchangeable.

Fig. 5 Illustration of our iterative optimization for open curve removal.
a Iteration #1, b iteration #2 and c iteration #3

Every open curve connects at least one closed curve, and
open curves that are connected to long closed curves are
more likely to be unexpected than ones connected to short
closed curves.We thus improveEq. 5 using a relative distance
measurement that divides Hausdorff distance by the length
of the connected closed curve: Hausdorff(ei , e j )/length(e j ).
And the reservation of the open curve ei is defined as the
minimum among all of its relative Hausdorff distances with
adjacent closed curves:

S(ei ) = min j
Hausdorff(ei , e j )

length(e j )
(6)

We remove the open curves whose S(ei ) is less than a
curve threshold τp. τp is set in the range of [0.1, 0.5] in our
experiments. The junction point degenerates to a common
skeleton point once its connected open curve is removed,
and the other two curves connected to this junction point
will be merged as a new curve. Therefore, both V = {vi } and
E = {ei } are upgraded after unexpected open curve removal,
and we recompute the open curve reservation formula and
remove more unexpected open curves in an iterative manner.
Merged closed curves are longer than any of the two original
ones, the reservation values S(ei ) of their adjacent remain-
ing open curves become smaller. We keep the threshold τp
constant, and remove open curves in each iteration if their
reservation values S(ei ) become less than τp. The iteration
will terminate when no more open curves are removed. Our
iterative strategy removes most of unexpected open curves,
even if they are too long to be identified by the simple length
judgement. Figure 5 shows all iterations of the open curve
removal for the input shown in Fig. 4. Normally, about 1-4
iterations are sufficient in all our experiments.

5 Vectorization

The open curve removal process simplifies the topological
graph to a new one G ′ = 〈V ′, E ′〉, in which all unexpected
open curves, junctions and endpoints are removed. We can
now convert the remaining curves E ′ = {e′

i } into parameter-
ized curves. We first detect turning points in each e′

i by 2D
curve curvatures. The curvature for each point p j is com-
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Fig. 6 Illustration of our curve fitting result. a Turning point in dark
green and b Bézier curves in blue

puted by σ j = (p j−δ − p j ) · (p j+δ − p j )/||p j−δ − p j || ·
||p j−δ − p j ||, where δ is a sampling interval parameter, set
to 5 in all our experiments. Figure 6a illustrates all detected
turning points in dark green.

Turning points separate each edge e′
i into more seg-

ments, and we fit each segment by a cubic Bézier curve
f (s) = ∑3

i=0 fi · si separately. We first reformulate it by
f (t) = ∑3

i=0 fi · t i (1 − t)3−i , where f0 and f3 can be
directly decided by the positions of its segment terminals.
Secondly, we sample curve points p j within this segment,
and compute f1 and f2 by solving a least square equation.
Coefficient parameters fi are computed independently for
horizontal and vertical coordinates.

We employ the Hausdorff distance between the original
line segment and the fittedBézier curve to calculate the fitting
error. If thefitting error is larger than a threshold τ f , we divide
this segment into two parts with equal lengths, and fit them
again. This fitting-and-dividing iteration will stop when the
errors of all segments are less than τ f . We take τ f as 4 pixels
in all our experiments. Finally, we average tangential direc-
tions on both sides of dividing terminals to preserve the G1

continuity of each edge. To preserve the G1 continuity at the
junctions, we estimate a continuity level between arbitrary
two connected branches using the angle of their tangential
direction difference at the junction. If this angle is larger
than 140◦ and other angles at this junction, we take these
two branches as one single edge in the fitting step to enforce
their continuity at the junction. Note that for the sake of
curve simplicity, we always fit each segment by lower-degree
curves (straight lines and quadric Bézier curves) before the
cubic Bézier fitting, and accept them according to their fitting
errors. Figure 6 shows our vectorization result on the top of
the topological graph, and demonstrates the accuracy of our
fitting method.

6 Results and discussion

Topology comparison Topology optimization is the core of
our work. Figure 7 compares our topology with skeletons

extracted by Favreau et al.’s method [10] and the simplified
line drawing bitmap by Simo-Serra et al. [23]. Figure 7b,
c shows skeleton results produced by the software released
on authors’ homepage. Figure 7b uses a minimal region size
7, and can not successfully remove all unexpected regions,
like the two in the green rectangle. Figure 7c uses a minimal
region size 8. It removes the smaller unexpected region in
the green rectangle, but also removes the necklace region in
the pink rectangle.

Favreau et al. discard all open curves in their region-based
skeleton extraction and add them back as pixels at a distance
greater than the closest skeleton point. However, single dis-
tance thresholding fails to preserve the wanted open curves
if long unexpected open curves exist. In the green ellipses
of Fig. 7b, unexpected open curves on the top of the head
have not been removed, while wanted open curves of eye-
brows are removed. Favreau et al.’s hypergraph exploration
can simplify final vector curves, but hardly correct topolog-
ical errors in the initial skeleton.

Figure 7d, e shows line drawing image simplification
results proposed by Edger et al. [23]. They are produced by
authors’ web-based application using simplification degrees
300 and 400 separately. Figure 7d does not preserve the neck-
lace detail, and Fig. 7d, e generates many broken curves,
which will be difficult to connect in the vectorization stage.

Our method takes flatness, area, outer width, indepen-
dence hypotheses for the region removal and parallelism,
relative distance hypotheses for the open curve removal,
optimizes the topology graph in an iterative manner and
thus removes all unexpected regions and open curves while
preserving most structural details. Figure 7f illustrates our
improved skeleton and final vectorization. Note that gaps in
Fig. 7f are produced by open curve removal, they do not exist
in the topological graph, and thus naturally filled up by our
vectorization method, as shown in Fig. 7g.
Vectorization comparison Figure 8 compares our method
with most existing line drawing vectorization methods. Fig-
ure 8b shows results produced by Adobe Illustrator CC,
which contain many unexpected curves. Noris et al. focus
on the clean line drawings, fail to simplify the sketchy line
drawings, shown in Fig. 8c. Favreau et al. improve the simpli-
fication by skeleton extraction, but they still produce errors
when input line drawings are rough, as pointed out by red
ellipses in Fig. 8d. Figure 8e shows Simo-Serra et al.’s
image simplification results; they neither simplify the input
into single curves in many places nor produce vectorization
outputs. Figure 8f shows Liu et al.’s stroke simplification
results that are close to the intention of the artist, but their
method requires stroke information, cannot apply to the
rasterized line drawing images.Ourmethod can achieve com-
petitive vectorization results without stroke information; our
improved topology optimization has removed all unexpected
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Fig. 7 Topology comparison with state-of-the-art methods Favreau et
al. [10] and Simo-Serra et al. [23]. a Input bitmap, b Favreau et al. Min
region size = 7, c Favreau et al. Min region size = 8, d Simo-Serra et

al. Simp. degree = 300, e Simo-Serra et al. Simp. degree = 400, f our
topology graph and g our vectorization

Fig. 8 Vectorization comparison with existing vectorization methods. a Input bitmap, b adobe illustrator CC, c Noris et al., d Favreau et al., e
Simo-Serra et al., f Liu et al. and g our result

Fig. 9 More results using our vectorization method and some failure cases in red circles

open curves and regions even they are long or large, although
illustrated in Fig. 8g.

Figure 9 shows more results of our vectorization method,
the roughness of line drawings demonstrates the validity for
very rough sketchy line drawings. And Fig. 10 illustrates
the robustness of our method for sketchy line drawings with

varying thickness. Figure 10a is drawn using strokes with
constant large thickness, and Fig. 10c is drawn using strokes
with varying thickness; their results are both good and simi-
lar.
Parameters Our method has two major parameters to tune:
τr and τp. They control the simplification level of regions
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Fig. 10 Our results for line drawings drawn by strokes with large and varying thickness. a Snoopy bitmap 1 with large thickness, b our result for
large thickness, c Snoopy bitmap 2 with varying thickness and d our result for varying thickness

Fig. 11 Our vectorization results with different parameters τr and τp . a τr = 0.5, τp = 0.2, b τr = 0.55, τp = 0.2, c τr = 0.45, τp = 0.2, d
τr = 0.5, τp = 0.85 and e τr = 0.5, τp = 0.15

Table 1 Statistics of topology count, times and parameters

Figures Topology count Times (s) Parameters

Regions Open curves Region opti. Open curve opti. Vectorization Total τr τp

Duck 33 → 14 32 → 2 0.22 0.25 1.39 4.1 0.4 0.3

Gentleman 83 → 12 34 → 1 0.35 0.18 0.85 2.6 0.5 0.2

Pumpkin 28 → 7 15 → 2 0.1 0.1 0.2 1 0.5 0.1

Face 67 → 4 14 → 2 0.5 0.17 0.51 2.6 0.5 0.2

House 51 → 22 26 → 2 0.58 0.47 1.11 5.1 0.5 0.35

Girl 173 → 19 43 → 9 1.06 0.34 1.21 5.0 0.7 0.3

Doraemon 100 → 15 14 → 6 0.49 0.25 2.23 5.8 0.5 0.1

Goldfish 95 → 20 36 → 14 0.94 0.47 1.65 5.7 0.9 0.1

Monster 75 → 11 35 → 0 0.54 0.33 0.88 4.9 0.6 0.5

Lantern 49 → 32 25 → 3 0.66 0.25 0.89 1.8 0.4 0.1

Snoopy 1 12 → 5 25 → 9 0.3 0.22 0.72 1.3 0.4 0.1

Snoopy 2 34 → 5 64 → 9 0.49 0.31 0.69 1.6 0.5 0.1

and open curves separately. Figure 11 shows examples using
different τr and τp values for the Gentleman line drawing.
The best result is achieved when τr = 0.5 and τp = 0.2.
Increasing τr to 0.55 results in removing the wanted regions,
and decreasing τr to 0.45 leads to leave unexpected regions.

Similarly, increasing τp to 0.85 results in removing wanted
open curves, and decreasing τp to 0.15 leads to leave unex-
pected open curves. Table 1 shows all parameters we use
in this paper, which takes τr in range [0.4, 0.9] and τp in
range [0.1, 0.5]. Note that these parameters only impact a
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Fig. 12 A failure case. a Input bitmap and b our result

few regions and open curves, since our iterative optimization
solves most issues.
Performance Our method is fully automatic; all experiments
are conducted on laptop computer with 2.60 GHz CPU, 8GB
system memory. The second and third rows in Table 1 show
the quantitative changes of regions and open curves. Though
iterative optimizations are involved for both region and open
curve removal, a few of iterations are required and only part
of the topological graph has to be recomputed in each itera-
tion. As shown in the middle rows in Table 1, two iteration
processes only take about 1 second, and the whole computa-
tion can be done within 6 seconds, which is faster than most
existing line drawing vectorizationmethods.Our current pro-
gram is fully implemented on CPU, and it is also possible to
reach interactive or even realtime performance using GPU
acceleration in the future.
Limitations Our topology simplification relies on the image
segmentation in the initialization stage. The trapped-ball
algorithm we have employed is insensitive to small gaps
between adjacent regions, but fails to connect large gaps.
And it is also problematic for separating strokes when they
are closed, as the trapped-ball algorithm tends tomerge them,
like the red circles in Fig. 9. Our assumptions for region
and open curve removal priority are violated in some special
cases. Figure 12 illustrates such a failure case, where close
short strokes are either removed or connected improperly.
Taking machine learning techniques may be a good solution
to better handle these issues, like Simo-Serra et al.’s work
[21,23].

Our method only has two parameters, which are intuitive
enough for the user to understand. However, the user still
has to tune it manually to achieve ideal results. Since the
open curve removal is optimized after the region removal,
the region threshold parameter τr also impacts the open curve
optimization. Therefore, τr and the curve threshold parame-
ter τp are not fully independent, τp has to be re-tuned once
τr is adjusted sometimes.

7 Conclusion

In this paper, we present an improved topology extraction
approach for vectorization of sketchy line drawings. The
key idea is a unified optimization mechanism to remove
unexpected regions and open curves. The input bitmap is
first divided into separated regions by a gap-insensitive
image segmentation, and unexpected regions are removed
iteratively according to artists’ drawing customs. We then
apply a skeleton extraction to construct an initial topological
graph. Our skeleton extraction automatically identifies end-
points and junctions without discarding any open curve. Our
iterative optimization mechanism contributes again here to
remove unexpected open curves to further optimize the topol-
ogy. Comparisons with state-of-the-art methods demonstrate
our improved topology extraction method can vectorize very
rough sketchy line drawing robustly and efficiently.

Our method lacks of high-level understanding of the line
drawing. We plan to employ the hypergraph exploration
method proposed by Favreau et al. to improve the curve sim-
plicity in the future [10]. And we also believe that employing
machine learning techniques can help our method simplify
the structural topology on a semantic level. Our idea of iter-
ative topology simplification has great potential for other
contents, such as image vectorization [29], videos [25] and
3D models [14] as well. These new contents may raise new
challenges; we hope more researchers can investigate this
research direction together in the future.
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