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Abstract

Image vectorization is one of the primary means of creating vector graphics. The quality of a vectorized image depends
crucially on extracting accurate features from input raster images. However, correct object edges can be difficult to detect
when color gradients are weak. We present an image vectorization technique that operates on a color image augmented with
a depth map and uses both color and depth edges to define vectorized paths. We output a vectorized result as a diffusion curve
image. The information extracted from the depth map allows us more flexibility in the manipulation of the diffusion curves,
in particular permitting high-level object segmentation. Our experimental results demonstrate that this method achieves high
reconstruction quality and provides greater control in the organization and editing of vectorized images than existing work

based on diffusion curves.

Keywords Image vectorization - RGB-D images - Depth aware - Diffusion curves - Object segmentation and editing

1 Introduction

Vector graphics are a popular means of representing visual
information and offer several advantages over raster images.
They are resolution independent and can be scaled to any
size without loss of quality. They often have a very compact
representation, allowing them to be stored and transmitted
efficiently. They also support high-level editing operations
on geometric primitives as opposed to pixels. Vector illustra-
tions can easily be authored directly by an artist, generated
procedurally, or computed as an approximation of a raster
image, a process known as vectorization. Vectorization is an
important tool in art and graphic design, as it makes a vast
universe of expressive photographic content available in a
vector graphics context.

Diffusion curves [17] are arecent, high-level vector graph-
ics primitive. A single diffusion curve is a vector path
augmented with color samples, each of which is associated
with a position on the curve and restricted to the curve’s left
or right side. In a diffusion curve image (DCI), composed
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from a set of diffusion curves, the colors diffuse outward
from the curves to endow every point in the canvas with an
interpolated color. Diffusion curves have been used both as
drawing primitives in handmade illustrations and as the build-
ing blocks of automated vectorization algorithms. However,
vectorization with diffusion curves faces several challenges.
First, as with other vectorization algorithms, success depends
on robust and accurate edge detection, a perennial problem in
image processing. Edges can be difficult to extract from color
images, particularly in areas of roughly constant color. Object
contours can also be obscured by color variation caused
by texture or lighting, especially in detailed photographs
(Fig. 3). Second, it can be difficult to edit the resulting vector
images at a high level of abstraction. Unlike mesh-based [12]
and patch-based [31] vector graphics representations, a DCI
consists of a sparse set of disconnected paths, making it
difficult to extract and manipulate the subset of paths that
contribute to an object in the image. Current techniques are
typically limited to curve-level editing [9,11,17].

An RGB-D camera produces both a standard RGB image
and a depth map, which reports the depth of every pixel
in the image. Several inexpensive RGB-D sensors, such
as Microsoft’s Kinect, Apple’s TrueDepth, and Google’s
Project Tango, are now available, prompting new research
on the use of depth information in standard computer vision
algorithms. For example, recent work has used depth to
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improve the performance of image segmentation [6] and 3D
modeling [15].

In this paper, we propose a novel image vectorization tech-
nique, based on diffusion curves, which incorporates depth
information to address the challenges mentioned above. The
depth map provides valuable cues for segmentation and is
used to generate the basic contours for objects in the image.
Color information is used to extract multi-scale edges. The
contour and color edges are then combined and used to gen-
erate a set of diffusion curves. We improve the quality of
vectorized images by taking advantage of depth information.
With depth, we can more easily construct diffusion curves
that align with important image features and object contours.
Moreover, our proposed method supports object-level editing
and processing. We can select an object in an image by using
the depth-aware image segmentation. The extracted object
can be vectorized to generate the diffusion curves associated
with it. This curve—object relationship raises the efficiency
of vector image editing, as the user can potentially manipu-
late the dozens or hundreds of curves making up an object
en masse rather than one at a time.

To the best of our knowledge, our work is the first appli-
cation of RGB-D images in vectorization. We expect that
low-cost RGB-D sensors will be deployed widely in home
and mobile consumer devices in the near future, and so the
time is right to develop depth-aware variants of standard
graphics algorithms like vectorization.

2 Related work

The earliest vector graphics systems could represent only
the outlines of shapes. Solid color and gradient fills later
became standard and permitted the compact representation
of awiderange of expressive, scalable images. More recently,
research has sought to increase the expressive range of col-
ors and textures in vector graphics via methods that can be
classified as patch-based [13,31], mesh-based [12,29], and
curve-based [32].

Curves are widely used in computer science to describe
objects. Diffusion curves, first proposed by Orzan et al. [17],
represent an image by a set of curves augmented with color
samples along their lengths. The color samples on either side
of a curve diffuse across the entire image canvas smoothly, a
process that can be modeled by solving a Poisson equation.
Diffusion curves are a flexible primitive that can be used to
vectorize realistic images. However, the work of Orzan et al.
had difficulty with natural images or digital photographs with
rich details. To improve the fit between a raster image and
the colors computed from a set of diffusion curves, Jeschke
et al. [11] extended the diffusion curve representation with
more accurate color and texture attributes. In order to produce
photorealistic effects, Hou et al. [7] extended the diffusion
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curves by adding two new geometric primitives including
Poisson curves and Poisson regions. Several other papers
use a bi-Laplacian formulation of diffusion curves in order
to provide more control over color diffusion from bound-
ary curves [2,4,8]. Xie et al. [32] proposed an automatic
vectorization method based on extracting hierarchical diffu-
sion curves in both the Laplacian and bi-Laplacian domains.
Although their work achieves a high-quality reconstruction
both for vector art and for natural images, their diffusion
curves and colors are mostly static and cannot be edited
later, apart from tasks such as detail removal and styliza-
tion. By minimizing a measure of the color reconstruction
residual, Zhao et al. [35] introduced a solution to the inverse
diffusion curve problem grounded on the theory of shape
optimization. However, this method focuses on the recon-
struction error rather than the curve editability; it cannot
enable easy editing of generated diffusion curves. Sun et
al. [28] proposed a fast multipole representation for diffusion
curve images by introducing a new vector graphics primitive
called diffusion points; their technique can render millions of
diffusion curves in real time. Jeschke [9] introduced a gener-
alized and improved diffusion curve representation based on
a spatial blending of multiple Laplace functions and a new
edge blur formulation. However, these diffusion curves are
defined manually by users, not extracted automatically from
an image, making the technique unsuitable for vectorization
of detailed real-world images.

Current diffusion curve image representations consist of
relatively sparse sets of disconnected curves, each of which
must be edited individually rather than at the level of the
objects in the image. Although Xie et al. [32] employed a
hierarchy of multiresolution diffusion curves to make their
results more editable, their method was limited to rendering
at multiple levels of visual abstraction and could not sup-
port shape and color editing. Our method combines color
and depth information and is therefore capable of defining
diffusion curves that align accurately with both important
image features and object contours. As a result, we can
edit vector images at a higher semantic level than what
was previously possible, by recognizing the relationship
between an object and the diffusion curves that represent
it.

As reliable and affordable RGB-D sensors become widely
available, new work has utilized depth information to sim-
plify common challenges in computer vision and com-
puter graphics, in both 2D and 3D. KinectFusion [15]
creates high-quality 3D models in real time from the
live depth data captured by a moving Kinect camera.
Song and Xiao presented deep learning techniques for 3D
object detection in RGB-D images [25,26], demonstrat-
ing improved performance and quality over state-of-the-art
methods based on RGB images alone. Ge et al. introduced
a 3D hand pose estimation method, using multi-view CNNs
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with depth cues, to fully recover 3D information about hand
joints [5].

In some work, depth information is simply treated as
an extra channel appended to the three color channels in
an image, providing an additional source of information
within the framework of existing image processing algo-
rithms. Gupta et al. proposed a method for edge detection
and image segmentation by combining RGB image and depth
information effectively [6]. Shen et al. presented a depth-
aware single-image seam carving method based on images
captured by a Kinect sensor [24]. The results are improved
by calculating the seam carving energy from both the RGB
color image and its corresponding depth map. Sun et al.
proposed a layered RGB-D scene flow estimation method
by decomposing a scene into moving layers ordered in the
depth map [27]. Wang et al. developed a multi-camera system
to generate a high-resolution color image with an accurate
depth map. It reproduces many of the effects possible with
light-field cameras, including image defocus [30]. Inspired
by these methods, we propose to use depth information from
RGB-D data to improve the quality of image vectoriza-
tion.

3 Image vectorization

Given a color image and its depth map at same resolution,
our goal is to compute a diffusion curve image that closely
approximates the input image. Because color and depth have
different behavior and operate at different scales, we extract
color edges and depth edges via two distinct methods and
combine the edge information afterward. For the color image,
we use a multi-scale Canny edge detector to extract edges.
For the depth map, we first use a trilateral filtering algo-
rithm to recover any missing depth information and then use
a cartoon edge detector on the recovered depth map. Because
we extract curves from the color and depth images inde-
pendently, the more abundant color edges can often overlap
depth edges. In order to preserve object contours found via
depth, we subtract these contours from the color edges, leav-
ing behind curves representing image details and texture. We
then use the two sets of edges to construct diffusion curves.
As always, the final vector image can be rendered by solv-
ing the Poisson equation with boundary conditions defined
by the diffusion curves. The entire process is visualized in
Fig. 1.

(Input ( Edge Extraction

Multi-scale Canny edges

RGB color image

Color edge structure

Detail edge structure

I
(a) (c) G)) Subtraction
Depth image Recovered depth image Depth edge structure (@
N\ (b) J L (¢) ® J
(Vectorization )
Reconstruction result
r Color Geometry
vectorization vectorization
A A

4LCOIM Control Points) LCubic Bézier Curves]

\ ) J

Fig.1 An overview of our process for vectorization of an RGB-D image
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3.1 Edge extraction
3.1.1 RGB edge extraction

Scale invariance is frequently cited as an intrinsic property of
real-world images [21]. In particular, multi-scale structures
have been observed in the statistics of image edge detection
for a long time [14,18]. In order to get the richest possi-
ble edge information, we apply Canny edge detection in a
Gaussian scale space derived from the input image. Follow-
ing Orzan et al. [16], we apply a sequence of Gaussian blurs
with increasing variances to generate a set of images with
features at ever broader spatial scales. We then apply Canny
edge detection on each scale image, producing a hierarchy
of edges.

Canny edge detection produces a binary bitmap that iden-
tifies edge pixels, as shown in Fig. lc. From this bitmap,
we must extract long piecewise linear paths representing
coherent image edges, which will drive subsequent vector-
ization steps. This process is challenging: A given edge pixel
may have three or more neighbors in the bitmap, particu-
larly in regions of high detail, making it difficult to decide
which paths to extract. In order to find long connected paths
while avoiding small noisy edges, we apply a gradient-guided
search algorithm. First, select a random edge pixel p and
compare its gradient direction t,, with those of the eight pix-
els g; inthe 1-ring of p, denoted €2,. Of these eight pixels, we
consider the subset that belong to the edge bitmap and select
a connecting neighbor ¢* whose gradient direction aligns
most closely with the gradient direction of p, provided that
the difference between the two gradient directions is less than
45 degrees. That is, we are searching for

q* =argmaxt, -t,, t,-t; > /2/2. (1)
qi €

If a suitable g* is found, we connect p and g*. Otherwise,
we expand the search area to the 16 pixels in the 2-ring of p. If
apixel ¢* can be found in this 2-ring satisfying the conditions
above, we connect p and ¢* via the pixel that lies between
them. Once these potential connections are considered for a
pixel p, we repeat the process on other edge pixels, ultimately
producing a set of paths Eor. Figure 1d shows the resulting
connected paths, each one drawn in a different color.

3.1.2 Depth edge extraction

The depth map provided by a sensor such as that in a
Kinect may contain many artifacts, including undersampling,
missing samples, and additive noise [33]. Therefore, before
extracting edges, we first process and filter the depth map to
suppress these artifacts. We use the progressive color-guided
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trilateral filtering method presented by Ye et al. [34]. Their
method first dilates regions with missing depth samples to
eliminate potentially unstable depth estimates at the bound-
aries of these regions. Then, they adopt an outside in-depth
recovery strategy that iteratively computes depth estimates
at boundaries until all holes are filled. Because depth and
color information are strongly correlated in capturing geo-
metric structure in a scene, we use RGB edges, as described
in Sect. 3.1.1, to guide depth recovery. Our trilateral filtering
algorithm considers rough depth variance, spatial distance,
and color variance. Given a depth image D, a color image I,
and the piecewise polygonal paths E o extracted from the
RGB image, we can estimate the depth D), for a boundary
pixel p with missing depth information as follows:

] A
Dy = » Z Gi(p = @)Ge(Dp — Dg) G (Ip — 1g) Dy
yeQ(p)

2

Here, w is the normalization factor, 2(p) is the subset of
neighboring pixels of p with valid depths and that are not sep-
arated from p by a pathin E¢gjor, D p is the initially estimated
depth of D, by averaging immediate valid neighbors of p,
and I, is the color at pixel p. The filter is composed from three
main factors: the spatial distance G, (p —¢q), the depth differ-
ence G¢ (ﬁp — D), and the color difference G, (I, — I;). In
each case, G (-) is a Gaussian kernel with standard deviation
o . As depth values are estimated, they are added to the set of
known depths, shrinking regions with missing information,
until all missing areas are filled. Figure 1b shows an initial
depth map, with the corresponding recovered result shown in
Fig. le. Note that missing depth values, shown as black spots
in Fig. 1b, are smoothed over while preserving the 3D geo-
metric structure of the original scene. Please refer to Fig. 7
for more depth recovery results.

A depth map bears some resemblance to a cartoon image:
Itconsists of large regions of constant or slowly varying color,
divided by sharp edges. Based on this observation, we extract
depth edges using an enhanced version of Cheng’s technique
for cartoon edge detection [3]. Cheng’s algorithm consists
of two steps. First, non-maximal suppression is applied to
the second derivative of the input image to identify curve
pixels. Second, edge pixels are linked to form long curves,
while removing unreliable curves made from fewer than three
pixels. The paths produced by this algorithm can contain
some undesirable artifacts, as shown in Fig. 2. The output of
Cheng’s algorithm is shown in Fig. 2a, followed by close-ups
of the highlighted boxes in (c) and (e). Note that some short
edges are left disconnected from nearby longer ones, as in the
two adjacent edges in (c). Also, in some places nearly iden-
tical curves are drawn side-by-side, as in (e). Starting with
the output of Cheng’s algorithm, we connect short curves to
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- -
(a) (b)

(c) (d)
(e) ®

Fig. 2 A comparison of the out from Cheng’s cartoon edge detection
algorithm [3] and our method. Given the input depth map from the
top row of Fig. 7, Cheng’s method produces the curves in (a) and our
method produces the curves in (b). The images in ¢ and e close-ups of
the boxed regions in (a), (d) and (f) are close-ups of (b)

long (ideally closed) curves and merge doubled curves that
run side-by-side. To form long curves, we check the distance
between the endpoints of two piecewise linear paths and the
difference in depth values at these end points to determine
whether they can be connected. If the distance is less than 1.5
pixels and the difference in depths is below a threshold (15
units in the depth map’s luminance channel), we connect the
two paths. As shown in Fig. 2d, the short curves in Fig. 2c are
connected to form a longer curve. Also, if a short curve lies
within one pixel of a longer curve along its normal direction,
we merge the short curve into the longer curve, allowing us
to merge the multiple curves shown in Fig. 2e into the single
red curve in Fig. 2f. We refer to the resulting set of extracted
depth paths as Eqgepth-

3.1.3 Edge subtraction

When depth discontinuities in a scene occur in places of
high color contrast, edges detected in the depth map will
also be visible in the color image. However, many addi-
tional color edges, marking texture or lighting boundaries

on object surfaces, will not be detected in the depth map.
In most cases, depth edges delineate object outlines more
clearly and robustly than color edges. Thus, we use Eqep as
a coarse starting point for vectorization and add E o to cap-
ture details. However, our vectorization process will perform
poorly in the presence of overlapping edge paths. Therefore,
we subtract Egepth from Ecolor, removing any color edges that
are also depth images. Before finding paths as in Sect. 3.1.1,
if p is a pixel belonging t0 Egeph, we modify the detected
Canny edge pixels by removing pixels in a 3 x 3 region cen-
tered at p. We refer to the resulting paths as Egetail, as shown
in Fig. 1g.

Figure 3 shows the edges extracted from an RGB color
image and its corresponding depth map. As shown in the
boxed region in Fig. 3b, it is difficult to extract the contours
of the chair’s arm from the color image because its pixels are
too close in color to those of the floor behind it. By compar-
ison, the contours extracted from the depth image, shown in
Fig. 3d, are much more robust.

3.2 Diffusion curve generation

Given the detail paths Egetail and depth paths Egepm com-
puted from an RGB-D image, our goal is to generate a
diffusion curve image that closely approximates the colors
of the source RGB image. The procedure of generating dif-
fusion curves involves consideration of both geometry and
color information. To vectorize geometry, we fit piecewise
smooth cubic Bézier curves in a least-squares sense to the
extracted polygonal paths [23]. In order to turn this geom-
etry into a diffusion curve, we must then compute a set of
color samples extracted from RGB data.

The paths in Egetail and Egeptn record sharp color tran-
sitions or object boundaries. We generate color samples by
starting with a dense set of samples along both sides of the
path and then simplifying to match colors while avoiding
overfitting. For every pixel p on a curved path, let / be the
point three pixels away from p in the curve’s normal direc-
tion, on the left side of the curve. Similarly, let r be three
pixels away from p to the right of the curve. We sample the
image in a 3 x 3 neighborhood at / and r to obtain color
samples on the left and right sides of the curve at p. How-
ever, this neighborhood may be crossed by other paths in
regions of high curvature or high detail, and we do not want
our sampled color to include information from across these
potentially sharp boundaries. We therefore define a neigh-
borhood NV, consisting of the subset of the pixels in the 3 x 3
neighborhood around / that are not separated from p by any
other paths in the neighborhood. Define the neighborhood
N, similarly.

We then use a modified mode filter at / and r to generate
the two color samples for the pixel p. We explain the process
for Nj; the same steps hold for N,. Let the pixels of N; be
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(b)

(c) (d)

Fig.3 Edges extracted from color and depth images, a is the color image, b is the result of RGB edge extraction, ¢ is the depth image, and d is the

result of depth edge extraction

denoted {Iy, Iy, ...I,—1}, where n < 9. Let S be an initially
empty collection of pairs (S}, w;), where S; is a color and w;
is an integer weight. For every pixel color /;, compare it with
all the candidate colors stored in S. If the distance between

I; and S; is less than 50 CIE L*a*b* units, update S; to a
Si+I;

new value and increment its weight w;. Otherwise,
add the new pair (/;, 1) to S. This iteration yields a set of
candidate colors with associated weights. We create a color
sample at p by taking the color with the maximal weight.
The pseudocode is summarized in Algorithm 1.

Once we have left-hand and right-hand color samples
stored at every pixel along a path, we thin the samples out to
avoid overfitting. Specifically, we walk over the samples on
one side of the curve and discard any sample that is within
10 CIE L*a*b* units of the previous preserved sample. We
then repeat the process with the samples on the other side of
the curve.

Algorithm 1: Calculate a modified mode for a set of

colors {/y, ..., I}
1. 5=0
2: for I; in {Iy, ..., I,} do
3 for(Sj,wj)inSdo
4 if (||1; — S;|| < 50) then
5: Sj <—(Sj+1i)/2
6: Wj < Wj +1
7 continue i
8 end if
9:  end for
10:  S.add( (1;, 1))
11: end for

12:

13: (Smax» @max) = (S0, @o)

14: for (S;, w;) in S do

15: if (wj > wmax) then

16: (Smax, @max) = (S, ;)

17:  end if
18: end for
19:

20: return Sy,
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4 Object-level editing

The ability to edit vector graphics at an abstract, geometric
level remains one of the reasons for its popularity [19]. How-
ever, diffusion curve images typically consist of a sparse set
of disconnected curves, which are not necessarily associated
with the semantics of the drawing they represent. Conse-
quently, editing a coherent object in a diffusion curve image
may require modifications to a large number of individual
curves, and the effects on the final image may be hard to
control or predict.

The depth information that powers our vectorization algo-
rithm also gives us greater ability to detect and edit whole
objects. By design, our depth-based diffusion curves are
aligned with object boundaries. In this section, we describe
a suite of tools for flexible object segmentation and editing
of images.

Before editing, the object must be segmented from the
original image. We use the two-stage depth-aware Grabcut
algorithm for this purpose. Firstly, the segmentation begins
when the user draws a rectangular region on the canvas, con-
taining the object of interest. The user then manually adjusts
parameters controlling the range of depths that make up the
object, which will flag a subset of the pixels in the rectan-
gle (Fig. 4a). The user can adjust the rectangle extents and
depth range to define a selection region that approximates
the object of interest as closely as possible. An initial depth
mask is generated with its pixels marked with two flags denot-
ing probable foreground and sure background. The probable
foreground is marked in red color, while the rest sure back-
ground is marked in black color. Then, we use this initial
depth mask and the RGB image (Fig. 4e) as the input for the
Grabcut [20] algorithm and get the initial segmentation result
(Fig. 4b). However, the segmentation result greatly depends
on the depth mask. For some images, we can get quite good
segmentation results after the first stage, such as the bowl-
ing pin in Fig. 9 and the plaster cast in Fig. 10. But in some
complicated examples, some foreground pixels have similar
or same depth value with its nearby background pixels. As
shown in Fig. 4a, the bottom region of the rectangle which
covers some parts of the stuff animal and the cardboard box



Depth-aware image vectorization and editing

Fig.4 A demonstration of depth-aware object selection algorithm and
its comparison with Grabcut method [20]. The user draws a rectangle
and adjusts the depth range to select the red region and generate an initial
depth mask in (a), the initial segmentation result is generated in (b), the

Table 1 Parameters and flags of two-stage depth-aware Grabcut algo-
rithm

Min_depth The minimum depth threshold
Max_depth The maximum depth threshold
Red_flag Probable foreground pixels
Black_flag Sure background pixels
White_flag Sure foreground pixels

almost have same depth, we cannot get a good initial depth
mask by adjusting the depth range. As a result, the top part of
the cardboard box has come to the initial segmentation result
which we do not want (see the bottom area of Fig. 4b). To
this end, we perform the second stage which refines the initial
depth mask. Specifically, we draw a rectangular region on the
initial depth mask and mark those probable foreground pix-
els located in this rectangle as sure foreground area (Fig. 4¢).
Therefore, the probable foreground pixels in the initial depth
mask (Fig. 4a) are further divided into probable foreground
pixels and sure foreground pixels (marked in white color).
Then, we use this refined mask for the Grabcut algorithm
and obtain the final segmentation result (Fig. 4d). Table 1
shows the parameters and flags used in our two-stage depth-
aware Grabcut method.

The comparison between our segmentation algorithm and
the previous Grabcut method [20] is shown in Fig. 4. Given
the bounding box in Fig. 4e, we can see that the segmen-

(h)

(g

depth mask is refined in (c), and the final segmentation result is in (d).
f and h are the Grabcut [20] results based on a bounding box interface
in (e) and more precise user seeds interfaces in (g), respectively

tation result in Fig. 4f) is not satisfactory. Even with more
precise user seeds interfaces (Fig. 4g), the improved result in
Fig. 4his not as good as the result of our method (Figure 4d).
Moreover, our depth-aware Grabcut algorithm is much more
efficient than the previous Grabcut algorithm. Because the
proposed depth mask defines a selection region that is very
close to the target object, all our segmentation results are
obtained by performing only one iteration of Grabcut algo-
rithm. By contrast, the previous Grabcut method usually
needs many times of iterations to get a better result. Both
Figs. 4f and 4h are the results by running the Grabcut algo-
rithm with 20 iterations. This time-consuming process limits
the real-time user feedback.

Once an object has been generated, it can be edited col-
lectively at a high level by using its diffusion curves. We
support editing operations including linear transformations
(translation, rotation, and scaling) as well as nonlinear trans-
formations (localized stretching and bending). As shown in
Fig. 5, the extracted stuffed animal in Fig. 4d is warped
as a single aggregate object without having to edit indi-
vidual curves. The curve—object relationship tremendously
improves the efficiency of editing diffusion curve images
and provides a more natural way to edit at a higher semantic
level.

In some ways, a vector graphic is like a collage of objects
with each object layered over other objects. Therefore, users
can individually move and edit any object independently
without ruining the background layers. However, the object
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(b)

(d)

Fig.5 A demonstration of object-level editing. a and b are the diffusion curves and its reconstructed result before editing, ¢ and d are the diffusion

curves and its reconstructed result after editing

(d)

Fig. 6 A demonstration of image completion and vectorization, a is the background image with a hole of black pixels, b is the result of image

completion, c is the diffusion curves, and d is the reconstructed result

segmentation leaves a hole of black pixels in the background
image as shown in Fig. 6a. Also, some extracted foreground
objects are not completed either (Fig. 10a). To this end, we
employ a PatchMatch-based image inpainting method [1]
and the completion results are shown in Figs. 6b and 10b.

5 Results and discussion

Current vector graphics systems do not offer direct sup-
port for diffusion curves as a primitive. To visualize our
vectorized diffusion curve images, we adopt the real-time
GPU-accelerated parallel rendering algorithm introduced by
Jeschke et al. [10]. It relies on a two-stage solution for dif-
fusion curve rendering, which we briefly review here. First,
the algorithm rasterizes a set of diffusion curves by dividing
each curve into a number of short line segments and render-
ing a Voronoi diagram of the segments. The Voronoi diagram
is used to construct an ID map that records the closest curve
point to every pixel and a distance map that records the dis-
tance to that curve point. Next, a variable stencil size diffusion
solver is used to diffuse the initial guess image, guided by
the distance map. The solver applies a scheme similar to
Jacobi iterations, but with a large stencil size to transport
colors over the image more efficiently. For each iteration, it
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sets each pixel to the average of its circular neighbors, with
aradius computed based on the distance map in order to pre-
vent color mixing from pixels across curve boundaries. To
increase the convergence speed and the smoothness of the
result, the stencil size is reduced linearly at each step.

Our method is first evaluated on RGB-D images taken
from the Middlebury datasets [22]. Figures 1, 7, and 8 show
our image vectorization results for the Middlebury images
Bowling, Art, Motorcycle, Adirondack, and Jadeplant. Our
method is implemented on a 1.3GHz Intel Core i5 CPU with
4GB of RAM and an NVIDIA 970M GTX GPU. The render-
ing of the diffusion curves is implemented on GPU, while the
tracing part is implemented on CPU. The statistics and per-
formance of all the images in the paper are shown in Table 2.

Figure 8 compares our results with those produced by
Orzan et al. [17]. Given the color image in Fig. 8a and the
corresponding depth map in Fig. 8e, Orzan’s reconstruction
result and our result are shown in Fig. 8b, f, respectively.
Because Orzan’s method recognizes edges based only on
color differences, boundary features separating different
objects are not necessarily well preserved, resulting in visi-
ble artifacts indicated by green arrows in Fig. 8d. As shown
in Fig. 8c, the boundaries of the foreground object are not
continuous, allowing colors to mix with the object behind it.
In comparison, the inclusion of depth information allows us
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Fig.7 Our image vectorization results on images from the Middlebury datasets.
depth map, recovered depth map, diffusion curves, and reconstructed result

() Our result

(e) Recovered depth map

Fig. 8 A comparison of our vectorized images with reconstruction
results from Orzan et al. [17]. a and e are the input color image and
the corresponding recovered depth map, b is the reconstruction result

to extract more robust object contours, regardless of color
or texture variation in the RGB data. As a result, with the
improved curves shown in Fig. 8g, our method obtains better
geometric structures and an improved reconstruction result
(Fig. 8h).

- b

(d) Orzan’s zoom in result

[ S
(h) Our zoom in result

based on the technique of Orzan et al., and d is a close-up of the high-
lighted region (b), with the corresponding curves shown in (c), f is our
reconstruction result, with zoomed curves and close-up in (g) and (h)

In addition to reconstruction results of the raster images,
our method also makes it easy to perform high object-level
editing operations. Most of the diffusion curves methods edit
each curve separately rather than an object [9,17,35]. The
image vectorization method proposed by [32] which also

@ Springer
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Table 2 Statistics and

. Dataset Image resolution # Depth curves # Detail curves Fitting (s) Rendering (FPS)
performance of the images
shown in this paper. The Figure Ih 313 x 278 10 272 24.1 1318
rendering performance is .
measured by rendering each Figure 7a 924 x 738 98 1532 108.1 69
diffusion curve image at the Figure 7b 1112 x 746 233 1983 159.4 40
same resolution as its input Figure 7c 956 x 660 46 1332 94.5 73
ast aoes
Tasiet 1mages Figure 8f 659 x 497 408 899 62.9 128
Figure 12d 1000 x 750 104 2017 149.9 48

Fig.9 Depth-aware image segmentation and object-level editing. From left to right, the columns show the RGB and depth images, and an extracted
bowling pin with its diffusion curves and reconstructions before and after editing

(@) (b) (© (d) (e) (®)
Fig. 10 Object segmentation, image completion, and object-level edit- is the image completion result, and c—f are the diffusion curves and
ing. Given the input RGB image and recovered depth map from the reconstructions before and after object-level editing

top row of Fig. 7, a is the depth-aware image segmentation result, b

Fig. 11 Motor editing example. From left to right, the columns show the diffusion curves and reconstructions before and after object-level editing

based on diffusion curves only performs editing tasks such ~ and manipulate the objects in the vector image, which greatly
as detail removal and image stylization without support of  reduces the time and efforts to create photorealistic editable
shape editing. By comparison, our method is able to extract ~ shapes of real-world complex objects. Figures 9, 10, and 11

@ Springer
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Fig.12 A vectorized image and an object-level editing result based on
an RGB-D image captured using the dual-lens system in an iPhone 7
Plus. The color and depth images are shown in (a) and (b). We generate
the diffusion curves shown in (¢), yielding the reconstructed vectoriza-

show another three examples of depth-aware segmentation
and object-based diffusion curves image editing.

We also applied our depth-aware vectorization and object-
level editing method on RGB-D images captured by the dual
lens of the iPhone 7 Plus smartphone; results are shown in
Fig. 12.

Limitations Although our approach works well in most cases,
there are still some aspects that could be improved. First, our
diffusion curve representation includes only color attributes
and therefore cannot mimic the full character of some source
image textures. Many natural images and photographs con-
tain textural information, which we could simulate by adding
noise parameters to our current diffusion curve image rep-
resentation [11]. Furthermore, the depth edges used for
depicting the contours of an object should ideally form closed
curves. We would like to develop a strategy that links uncon-
nected depth curve segments into longer closed curves, which
would further improve the quality of object-level selection
and editing. In addition, to make the object-level editing more
user-friendly, in the first stage of depth-aware segmentation
method, we would like to estimate an initial depth range
based on the statistics within the rectangle instead of tuning
the parameters manually.

6 Conclusions

We have introduced a vectorization method that can produce
a diffusion curve image from an RGB-D input. By incor-
porating depth information into the vectorization process,
our approach achieves better reconstruction quality in image
vectorization. Curves extracted from the input depth map
help to preserve the geometric shapes of objects, and support
higher-level editing operations. Our experiments and com-

(h)

tion in (d). We segment out one flower with its diffusion curves and
reconstruction shown in (e) and (f). The editing results are shown in (g)
and (h)

parison results indicate that our approach produces better
reconstruction results than previous diffusion curve image
vectorization methods on RGB-D image datasets. We also
developed an object-level editing tool, which allows users
to edit the content of a diffusion curve image at a higher
semantic level than was possible with prior techniques based
on diffusion curves.
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