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Abstract
Semantic segmentation of 3D point clouds is a crucial task in scene understanding and is also fundamental to indoor scene
applications such as indoor navigation, mobile robotics, augmented reality. Recently, deep learning frameworks have been
successfully adopted to point clouds but are limited by the size of data.Whilemost existingworks focus on individual sampling
points, we use surface patches as a more efficient representation and propose a novel indoor scene segmentation framework
called patch graph convolution network (PGCNet). This framework treats patches as input graph nodes and subsequently
aggregates neighboring node features by dynamic graph U-Net (DGU) module, which consists of dynamic edge convolution
operation inside U-shaped encoder–decoder architecture. The DGU module dynamically update graph structures at each
level to encode hierarchical edge features. Incorporating PGCNet, we can segment the input scene into two types, i.e., room
layout and indoor objects, which is afterward utilized to carry out final rich semantic labeling of various indoor scenes.
With considerable speedup training, the proposed framework achieves effective performance equivalent to state-of-the-art for
segmenting standard indoor scene dataset.

Keywords Point cloud · Scene segmentation · Surface patch · Graph convolutional network · Edge convolution ·
Encoder–decoder

1 Introduction

3D indoor scene understanding requires a thorough analysis
on geometric and semantic context of interior scene. Indoor
scene semantic segmentation, in which indoor objects are
assigned with different labels, is a fundamental sub-task of
scene understanding. Point cloud, which can be acquired
directly by most depth scanning devices, is a common geo-
metric representation in the literature of computer graphics
and computer vision [1–4]. Point cloud segmentation of
indoor scenes is now attracting growing attention because
of its various applications such as virtual/augmented reality
[5], mobile robotics [6], indoor navigation [7].
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Semantic segmentation of indoor scenes is still challenge
due to incomplete raw inputs, the scale of point cloud data,
cluttered and always heavily occluded settings such as real-
world indoor environments. For effectively processing point
clouds, the essential issue is how to effectively extract the
feature information of point cloud scenes or 3D shapes. Con-
ventionally, handcrafted features of point clouds are chosen
to analyze 3D geometry but they are difficult to select for
specific tasks [8]. Now, deep learning has achieved signif-
icant success on 2D image processing, inspiring works in
3D space. Most previous methods address 3D geometry and
3D vision problems using voxels [9] or multi-view images
[10] as input of convolutional neural networks (CNNs).
The conversion from discrete point clouds to such regular
representations is always time consuming. Recently, CNN
architecture has been applied directly on point clouds to cap-
ture geometric features [1], using max pooling layer that acts
as a symmetric function to encode global features from a
group of points. Since this pioneering work does not fully
consider local features, PointNet++ [11] further explores
local information at multiple scales but still does not con-
sider relationships between sampling points. In a parallel
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development, Graph convolutional networks (GCNs) extend
CNN architecture to graphs with irregular data. Since point
cloud is a kind of unstructured data, GCNs have promis-
ing potential to consume unordered 3D discrete point clouds
[12,13]. These methods treat each sampling point as a node
in graph and show promise for implementing convolution
on each node and its neighbors either in spectral or spa-
tial domain. Most deep learning based methods focus on the
extraction of intrinsic features for individual points and their
neighbors within bounded range. Moreover, when applied to
indoor scene understanding, these methods have to partition
the whole point cloud scenes into blocks with limited point
size.

To tackle the large-scale point cloud data and compu-
tationally time-consuming issues in deep learning based
indoor point cloud segmentation, our presented method
adopts surface patches as data representation. A fundamental
observation in various cluttered indoor environments is that
manmade objects are always constructed in a highly struc-
tured style, with a combination of various surface patches.
Apart from dominant room layouts, the surface patches
can also be identified in indoor furniture such as tables,
chairs, and cabinets. The discrete sampling points in the
surface patches remain geometrically consistent and can be
considered as object parts. Taking surface patches as data
representation for deep learning based segmentation task
can largely alleviate the difficulties due to large scales of
input data in a typical indoor scene with millions of sam-
pling points, thus speed up network training. Besides, the
surface patches of indoor objects generally have prior con-
textual information that can be easily captured. While the
surface patches data cannot be directly used as the input
of conventional CNNs, they can be treated as nodes in a
graph structure and their geometric properties can be used
as node features. The contextual relationships between pair-
wise patches can be regarded as edge features. To better
extract local features and aggregates neighboring informa-
tion, a Scene Patch Graph (SPG) is constructed. Considering
surface patches as nodes and their spatial relationships as
edges in SPG, our intention is to incorporate the patch graph
convolutional network (also called PGCNet) framework for
semantic segmentation of indoor point cloud scenes. To
achieve this goal, we utilize a novel module dubbed dynamic
graph U-Net (DGU) which incorporates dynamic edge con-
volution operation inside a U-shape encoder–decoder. Our
DGU consists of multi-layer encoding blocks and corre-
sponding decoding blocks with skip-connections. At each
level of DGU, graph structure is updated through a Dynamic
Edge Layer (DEL) which calculates the edges using pooled
atrous k-nearest neighbor (k-NN), and edge features can be
generated by an Edge Convolutional Layer (ECL). Given
an indoor scene point cloud, surface patches are first gener-
ated by region growing based on similar normal and short

Fig. 1 Given an indoor scene point cloud (a), surface patches (c) are
used as data representation. Based on our PGCNet, semantic segmen-
tation (d) is performed

distance, see Fig. 1c. The SPG can also be constructed
by extracted surface patches and their spatial relation-
ships, such as adjacency. DGU is then employed to encode
hierarchical edge features of the created SPG. Finally, A
multi-layer perceptron (MLP) classifier is utilized to pro-
duce labels for each node in our SPG. Comparing with
the existing methods that not distinguish the indoor objects
from room layout, our novel framework introduced in this
paper can be utilized to segment the input indoor scenes
into two basic components, i.e., room layout and indoor
objects, which can be further incorporated to generate rich
semantic segmentation of indoor point cloud scenes, see
Fig. 1d.

Contributions Themain contributions of our work are sum-
marized as follows,

– A novel framework, named as PGCNet, is introduced
which takes the surface patches as data representation of
indoor scene point clouds. This representation can largely
reduce the data size and also enable us to apply graph
convolutional network architecture on such large-scale
point clouds.

– A new module DGU is utilized to capture and aggre-
gate hierarchical edge features. This module employs
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dynamic edge construction and edge convolution at each
encoding block.

– With the help of our PGCNet, a layout-object classifica-
tion network is trained first and can be further trained for
semantic segmentation of indoor point cloud scenes. The
network training is effective and the performance is com-
petitive on segmenting standard indoor scenes Stanford
Large-Scale 3D Indoor Spaces Dataset (S3DIS) [14] and
ScanNet [15].

2 Related work

Indoor point cloud segmentation Previous solutions to
indoor scene segmentation mainly include model-based and
primitive-based schemes. With the help of pre-trained object
categories,Nan et al. [16] described a search-classify pipeline
for scene modeling. Li et al. [17] proposed an object-
retrieved approach to replace scanned data with objects
from 3D shape databases. Shi et al. [18] trained a set of
classifiers for both objects and objects groups to decom-
pose indoor subscenes. Although exploiting the information
from databases, these methods highly relies on the diver-
sity and the size of current 3D models datasets. Another
strategy is to employ primitive-based approaches that will
decompose indoor scenes into a set of geometric primi-
tives. Mattausch et al. [19] presented an approach to segment
indoor scenes by detecting repeated objects acquired from
multi-rooms indoor scanning data. They adopted a set of
nearly planar patches for representing indoor scenes, which
can be clustered using patch similarity matrix based on
the extracted shape geometrical descriptors. Recently, Hu
et al. [20] proposed an 3D semantic segmentation approach
using patch clusters as data representation. Inspired by these
works, our method adopts surface patches as intermedi-
ate representation and utilizes them to construct a graph
data.

3D deep learning based segmentation 3D deep learning
is a hot research topic and has been shown great potential
in semantic segmentation tasks [21,22]. Due to the success
of CNNs on regular domain, previous work always adopted
the view-based [10] or volumetric representations [21,23]
to transfer 3D point clouds into grid structure data. For 3D
object detection, Zhou et al. [23] transformed a set of points
within each voxel into a feature vector. Tchapmi et al. [21]
applied a fully CNNs to produce coarse voxel labels for
semantic scene segmentation. By fusing multimodal inputs
together, Hou et al. [24] jointly learned both image features
with 3D geometry features for 3D instance segmentation.
However, the data representation of multi-view images will
be limited to scalability due to occlusion and large network
input, and the voxel representation is also restricted due to

its requirement for extra high dimension. Qi et al. [1] intro-
duced the pioneer work which has a significant impact on
employing CNNs directly on point cloud data. They further
improved the performance by exploring local information
[11]. Recently, there has been a surge of interest in leveraging
GCNs to point cloud data. Point clouds and their neigh-
boring information can be represented as a type of graphs
which can utilize graph convolution for extracting local infor-
mation. To segment 3D point cloud data, Wang et al. [12]
proposed a dynamic edge convolution for updating the node
adjacency at each feature map. Landrieu and Simonovsky
[25] adopted superpoint as data representation and employed
gated graph convolution network for point cloud segmen-
tation. To further improve superpoint generation, Landrieu
and Mohamed [26] proposed a supervised learning network
for point cloud oversegmentation. Instead of recurrent-
based GCNs in [25] that uses same graph to update hidden
information, our method applies dynamic edge convolu-
tion at multi-level encoder to exploit local neighboring
features.

GCNs GCNs are popular in current research as they can
process convolution operations effectively for irregular dis-
crete data [27]. Existing GCNs can be classified into spectral
methods and spatial approaches. Spectral graph convolu-
tional methods [28,29] use graph Laplacian eigenvectors
and can conduct convolution operation on spectral features.
Different from spectral-based schemes, spatial graph convo-
lution methods utilize spatial information and aggregator to
generate neighborhood feature embedding. The aggregator
that passes node features message between neighbors can
be LSTM based [30], attention based [31], or max-pooling
based [12].

3 PGCNet-based point cloud segmentation
of indoor scenes

The main object of this paper is to perform indoor scene
semantic segmentation via surface patch representation. To
this end, a novel framework known as PGCNet is introduced.
The key components of PGCNet based indoor scene seman-
tic segmentation are shown in Fig. 2. Given indoor scene
point clouds, we first extract surface patches from input
point clouds by region growing strategy and compute feature
descriptors for each surface patch. Then an initial SPG can
be constructed using the extracted surface patches and their
pairwise relationships. DGU module consumes the initial
SPG and encodes multi-layer edge features through dynamic
graph construction and edge convolution. Take advantage of
our DGU module, PGCNet finally outputs semantic labels
for each surface patch of indoor scenes.
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Fig. 2 The pipeline of our point cloud segmentation method. Given input point cloud (a), surface patches are generated (b) and fed into PGCNet.
PGCNet finally produces semantic labels (c)

3.1 Scene patch graph (SPG) generation

Recent work [11,12] employed deep learning framework on
point cloud data. Most of them applied the neural networks
directly on discrete sampling points which may face expen-
sive computation problem if the size of indoor scene point
clouds is large. Partitioning whole indoor scene into blocks
with limited number of points is one strategy to deal with
such large-scale input data. The drawback of this solution is
that the size of blocks and the number of sampling points are
not easy to determine. The unsuitable selection of block size
may limit the effectiveness of learning context information.
Using surface patch representation can tackle these problems
and thus provide another plausible solution to indoor scene
segmentation.

Patch representation Surface patch structures are widely
applied in 3D indoor scenes applications such as SLAM
reconstruction [32], scene completion [33], room detection
[34]. Manmade objects in indoor scenes are commonly con-
structed in a highly structured style, with a combination
of planes. Apart from dominant room layouts, the planar
surfaces can also be identified in indoor furniture such as
tables, chairs and cabinets. Using surface patch as data rep-
resentation of indoor scenes has several advantages. First, it
can alleviate computation cost since the number of surface
patches is generally smaller than sliding blocks. Second, the
points in the same surface patch are geometrically consis-
tent and can be considered as a whole. In addition, surface
patch-based partition of whole scene is more reasonable than
using uniformed sliding blocks, since it takes object shape
structure into account. Furthermore, it is beneficial to learn
from the relationships between neighboring surface patches
that can be easily captured.

Patch growing Given an indoor scene point cloud as input,
the goal of this step is to convert the input point cloud into sur-
face patches. An efficient region growing strategy followed
by [19] is applied to partition the input point cloud. Specif-

ically, region growing for patch Pi starts from a seed point
s selected from unassigned curvature ascending points list.
Given a new closest neighbored point p outside Pi, p can be
added to Pi if the following conditions are satisfied:

np · ns > t1

(p − s) · ns < t2

(p − q) · nq < t3 (1)

here q is the last added point inside patch Pi; np, ns and
nq are the normal of point p, q and s, respectively. These
conditions specify the constraint that point p should be close
to the patch surface with similar normal of point s. The near
planar patches, which represent the major structures of most
indoor objects, are clustered preferentially according to seed
selection and growing criteria. Some parts of organic-shaped
objects can also be discovered at the end of patch generation
and they are remained as nodes of SPG.

Patch descriptors The input point cloud is now represented
by a set of surface patches. Feature descriptors are calcu-
lated to characterize each extracted patch. For each surface
patch, the fitting rectangle is generated through projecting
the bounding box onto dominant axes. The dominant axes
could be determined by PCAmethod. For each fitting rectan-
gle, the features descriptors includes centroid point position,
PCA normal, height, length, area, color, ratio of length to
width, fill ratio of convex hull area to area; see Table 1. In
addition, boundary points of each patch are also measured.

Scene patch graph construction The initial SPG denoted
G(l0)(V , E) is constructed, where V is the set of surface
patches and E represents the pair-wise patch spatial relations.
Given a set of surface patches generated from input poindt
cloud P = {P1,P2, . . . ,PN} ⊆ RF , where N is the number
of surface patches and F is the number of features for each
patch. Specifically, patch descriptors mentioned above are
employed and combined as node features, which indicate
compressed representation of input patches. In 3D space,
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Table 1 Feature descriptors of a fitting rectangle

Feature Description

Pp Centroid position

Pn PCA normal

Ph Height

Pr Ratio of length to width

Pa Area

Pf Fill ratio of convex hull area to Pa

Pc Color

adjacent patches are more likely to be in the same object.
To aggregate information from spatial surroundings, SPG
is initialized by adding edges between two adjacent surface
patches. Here, two surface patches are considered as adjacent
based on the minimum distance of boundary.

3.2 Dynamic edge convolution

Here, our presented PGCNet adopts dynamic graph convo-
lution since it can capture semantically similar structures at
each feature embedding, even theymay be distant in the orig-
inal input graph. Our dynamic graph convolution consists
of two types of layer, that is, DEL and ECL: DEL recal-
culates the edges using atrous K -NN followed by a TopK
pooling; ECL generates edge features that depict the rela-
tionships between a node and its neighbors.

Dynamic graph construction Graph is a non-structural
data which models a set of nodes and their relationships.
GCNs generalize CNNs framework to graphs and consume
irregular data. Spectral-based GCNs usually require eigen-
decomposition of Laplacian matrices that defines the graphs.
The computation cost of this kind of graph construction is
generally expensive. Spatial-based GCNs implement convo-
lution operation on node spatial relation-based graphs. This
type of graph construction has more flexible form than fixed
graph Laplacian matrices. The pioneering work [1] employs
CNNs directly on point cloud. Its succeeding work [11] fur-
ther considers local structures using farthest point sampling
to select nodes from fixed input points. While most GCNs
have fixed graph structures, recent work [12,35] find it ben-
eficial to recalculate edges after each convolution operation.
For instance, two distant chairs in the same indoor scene may
be close at feature space since they have similar geometric
properties. This information cannot be easily exploited using
fixed graph, but it may be discovered if graph is updated at
each feature embedding. In our dynamic graph construction,
the k-NNfor eachnode canbegeneratedbasedon L2 distance
metric in current feature space. In case of multilayer graphs,
k-nearest neighbor graph at each layer is constructed from

node features of preceding layer. Since two distant patches
in the original space may also have similar semantic fea-
tures, the idea of this dynamic update is that this can captures
nonlocal semantic information among the scene in a high-
dimensional metric embedding.

To enlarge receptive field without loss of resolution or
coverage, atrous convolution [36] has been introduced to
semantic image segmentation and further extended to 3D
data [35]. Our DEL adopts this idea to find dilated neigh-
bors. Specifically, k × d nearest neighbors are searched and
then k neighbors are selected by skipping every d neighbors.

Graph pooling In CNNs, pooling layers are used to scale
down the size of featuremaps and avoid overfitting. Recently,
pooling operations are adopted to Graph Neural Networks
(GNNs) and GCNs. Vinyals et al. [37] and Li et al. [38] used
attention mechanism to aggregate node information in the
graph. Zhang et al. [39] selected nodes after sorting them
in descending based on their last features. Ying et al. [40]
learned dense assignment matrix mapping nodes to a set of
clusters. The TopK method proposed by [41] selects high
scoring nodes based on a learnable projection vectorp, which
is sparser than assignment matrix in [40]. To form a smaller
graph at each U-Net layer, our method selects a subset of
nodes according to TopK method [41]. Considering a graph
with N nodes and their feature embedding X, as well as
adjacency matrixA, a down-sampled graph is constructed as

s = Xp/‖|p||
i = TopK (s, r)

X′ = (X � tanh(s))i

A′ = Ai,i (2)

where TopK operation ranks and returns k-largest values
based on scaler projection value s; � is element-wise multi-
plication and tanh is activation function that rescales logistic
sigmoid. The number of k is determined by a pooling ratio r .
According to selected indices i , a new graph with node fea-
ture embedding X′ and adjacency matrix A′ is constructed.
This newgraph drops (1−r)N nodes from the original graph.

Graph edge convolution The proposed method applies
convolution-like operations on the edges connecting neigh-
boring nodes. A single ECL consumes input graph G(l) that
consists of nodes V = {v1, v2, . . . , vN } with F-dimensional
features for each node, where l is the layer number and N
is the number of nodes. The output is a new graph G(l+1) in
layer (l+1) that consists of nodes V ′ = {v′1, v′2, . . . , v′N ′}
with F ′-dimensional features for each node.Generally, graph
convolution on irregular data domains is expressed as neigh-
boring aggregation. Given the feature embedding X(l) =
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{x(l)
1 , x(l)

2 , . . . , x(l)
F } in layer l, the graph edge convolution

can be calculated as

x(l+1)
i = α(l)

j∈N (i)(ϕ
(l)(x(l)

i , x(l)
j − x(l)

i )) (3)

where xi is the features of vi , x j is the features of an adjacent
node; ϕ denotes parametric non-linear function that gathers
information from neighbors; α denotes a differentiable and
permutation function, e.g., mean, max or sum. Instead of
using the feature of neighboring nodes directly, graph edge
convolution compiles difference of features between vertex
vi and all of its neighbors. Concatenating node feature xi and
relative feature xi − x j has been proven to perform better
than using node feature only [12], since this concatenation
combines both the shape information and local neighboring
context. Here in our implementation, ϕ is chosen to be a
MLP with ReLU as activation function; α is chosen to be
max operation to aggregate learned information and output
new features as

x(l+1)
i = (l)

max j∈N (i)(MLP(l)(x(l)
i , x(l)

j − x(l)
i )) (4)

where MLP function has multiple fully connected layers
using concatenated features as input; the number of neighbor-
ing nodes is determined by our dynamic graph construction.

3.3 DGUmodule

In order to extract local contextual features of point cloud,
it is necessary to process graph data through multiple
levels. To achieve accurate semantic segmentation, the
encoder–decoder architecture is widely employed to capture
multi-level features [42]. The encoder takes input data and
generates a high-dimensional feature through several convo-
lution blocks. The decoder restores frommulti-layer features
aggregated by encoder. Here, we use DGUmodule to propa-
gate hierarchical edge features generated by DEL and ECL.
Through the dynamic graph construction, this module can
not only capture edge information from initial SPG but also
from multi-level feature embeddings. The structure of DGU
is illustrated in Fig. 3.

U-shape networks U-shape architecture [43], which is
one of the classic encoder–decoder networks, excels in
pixel-level prediction. Recently, Graph U-Net [41] employs
U-shape design on graph data with graph pooling layer for
node down-sampling.

Encoder of dynamic graph edge convolution Instead of
static graph construction in [41], our method incorporates
dynamic graph into hierarchical U-shape design. ECL is
performed on input graph usingEq. (4). Afterward, themulti-
layer encoding blocks are stacked and each subsequent layer

Fig. 3 An illustration of DGU module. In this 2-depths example, a
ECL is first operated on input graph. One encoder contains a DEL for
dynamic graph construction and node down-sampling, followed by a
ECL for edge convolution on updated graph. Restoring layer brings
back recorded graph structure with skip connection

operates on the output of the previous layer. Each encod-
ing block consists of DEL and ECL. DEL is adopted to
recalculate edges and thus dynamically update graph. It first
constructs dynamic graph using atrous k-NN and builds a
sparse adjacency matrix. Based on this adjacency matrix,
a down-sampled graph is generated and recorded by graph
pooling layer using Eq. (2). ECL thereafter aggregates edge
features.

Decoder and skip connection The decoder stacks the same
number of levels as encoder. Each decoder block has a restor-
ing layer followed by an ECL. Restoring layer brings back
the graph using recorded node structure in the corresponding
DEL. The skip-connection is used between mirrored layers
for feature addition. In the end, another ECL is attached to
propagate hierarchical features beforeMLP patch prediction.

3.4 PGCNet architecture

The architecture of our PGCNet for indoor scene seman-
tic segmentation is presented in Fig. 4. The initial SPG
G(l0)(V , E) is fed intoDGU that carries out hierarchical edge
feature aggregation. These edge features are concatenated
with patch features. Subsequently, a MLP block is used to
predict label of each patch. This block has three shared fully
connected layers to predict label of each node, incorporating
batch normalization, dropout and ReLU activation.
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Fig. 4 The architecture of PGCNet for indoor scene semantic segmen-
tation. Our PGCNet consumes SPG from input scene point cloud and
outputs semantic segmentation. It consists of a DGUmodule that aggre-
gates hierarchical edge features, and a MLP block that predicts labels

for each patch. Edge features and patch features are concatenated before
final prediction. N is the number of patches, F is the dimension of patch
features, and the numbers in bracket are layer sizes of MLP

4 Layout-object-aware indoor scene
segmentation

Indoor scene point clouds can be divided into two major
categories, i.e., room layout and interior objects. Layout nor-
mally contains wall, floor, ceiling, door, window, etc. Objects
include but not limited to table, chair, bookcase, etc. Based
on patch features, we argue that most patches can be classi-
fied into layout or object. This classification can be regarded
as a coarse segmentation, which is presumably beneficial for
final rich semantic segmentation.

Layout-object classification A layout-object binary patch
classification network is first trained using proposed archi-
tecture of PGCNet. This networkoutputs the scores of surface
patches being room layout or interior objects.

Augmented semantic segmentation Regarding layout-
object classification information, indoor scene semantic
segmentation network is constructed by the same architecture
of PGCNet. To be more specific, layout-object classification
information is concatenated with the hierarchical features
from DGU before MLP patch prediction block. Conse-
quently, the output feature combines patch geometry, local
context information and layout-object prediction. This con-
catenated feature is employed to produce final rich semantic
labels for each patch.

5 Experimental results and discussions

We evaluate our proposed method first quantitative and then
qualitatively on extensive experiments on public datasets.

Implementation details The proposed framework is imple-
mented using PyTorch. The networks are trained and tested
with one NVIDIA 2070 GPU. The batch size is set to 8 and
the optimizer is chosen to be Adam with learning rate 0.01

initially. The learning rate is divided by 2 every 20 epochs.
The depth of Dynamic Graph U-Net is 3. Inside DGU, the
number k of nearest neighbors is 6 and dilation step is set to
be the depth of current layer. The pooling ratio r of TopK
operation is 0.5. Dropout rate is 0.2 at each layer of MLP
patch prediction block.

Dataset preparation We experiment our framework on
dataset S3DIS which are collected from 6 large-scale indoor
areas, contains 3D point clouds with ground truth anno-
tations. There are 271 room scenes in total. Each point
is assigned to one of the semantic labels from 13 cate-
gories (wall, floor, table, chair, etc.). We also experiment
our framework on ScanNet which consists of 1513 recon-
structed indoor scenes with 21 classes labeling. Rather than
splitting indoor scenes into blocks and sampling each block
[1,11,12], our framework takes SPG from the whole indoor
room as input. The thresholds for patch generation t1, t2, t3
from Eq. (1) are set to 0.9, 1 cm, and 0.5 cm, respectively.

Quantitative evaluations The proposed framework is per-
formed on ScanNet following the settings in previous
approach [11]. The whole dataset are split into 1201/312 for
training and testing. The RGB color information of points is
removed for fair comparison, and only the XYZ information
is used. The overall semantic labeling accuracy is adopted as
evaluation metric.

For experiments on S3DIS, we choose the typical scene
Area 5 as testing area and train our networks on the rest.
Since Area 5 is not the same building as others, the indoor
room scenes from this area are different to some extent. This
dataset splitting is challenge but favorable for evaluating
the generality of framework. Performance is evaluated by
following metrics: point-wise overall accuracy (OA), class-
wise mean of accuracy (mAcc), per-class intersection over
union (IoU) and class-wise unweighted average of IoU of
each class (mIoU). OA is defined as the proportion of cor-
rectly predicted points. For each class, the IoU is computed as

123



2414 Y. Sun et al.

Table 2 Training time for
semantic segmentation on five
areas from S3DIS

Method Scene size Point cloud size Data representation Training time

DGCNN [12] 204 195 million Sampling points 13h

PointNet [1] Sampling points 4h

Ours SPG 6min

Table 3 Running time in
seconds for semantic
segmentation on typical S3DIS
scene Area 5

Scene size Point cloud size Step Running time

67 84 million Patch generation 182.4

Patch feature computation 130.4

PGNNet-based patch labeling 0.5

Point labeling 0.3

Table 4 Quantitative results on the Area 5 of S3DIS dataset

Method OA mAcc mIoU Ceiling Floor Wall Beam Column window Door Table Chair Sofa Bookcase Board Clutter

PointNet [1] – 48.98 41.09 88.80 97.33 69.80 0.05 3.92 46.26 10.76 58.93 52.61 5.85 40.28 26.38 33.22

DGCNN [12] – – 45.97 88.13 97.41 71.40 0.11 4.88 45.50 32.29 70.99 59.11 3.50 45.33 27.89 35.43

SegCloud [21] – 57.35 49.92 90.06 96.05 69.86 0.00 18.37 38.35 23.12 70.40 75.89 40.88 58.42 12.96 41.60

PointCNN [2] 85.91 63.86 57.26 92.31 98.24 79.41 0.00 17.60 22.77 62.09 74.39 80.59 31.67 66.67 62.05 56.74

SPGraph [25] 86.38 66.50 58.04 89.35 96.87 78.12 0.00 42.81 48.93 61.58 84.66 75.41 69.84 52.60 2.10 52.22

Patch-MLP 75.16 46.41 38.17 89.86 97.50 62.13 0.00 18.12 32.58 11.06 62.89 50.81 2.14 36.79 12.87 32.10

Ours 86.24 63.85 53.60 95.59 98.75 80.69 1.69 31.18 48.28 43.85 72.53 70.96 17.38 55.38 46.98 50.89

Table 5 Overall accuracy of ScanNet labeling

Method OA

PointNet [1] 0.739

PointNet++ (SSG) [11] 0.833

PointNet++ (MSG) [11] 0.845

Ours 0.839

TP/(T +P−TP), where TP is the number of positive points,
T is the number of ground truth points of that class, and P
is the number of positive points. The evaluation metrics are
computed on individual sampling points. The semantic pre-
diction for each point is generated through propagating the
patch label generated by our framework.

There are five areas point cloud data for training, with
million points per scene. Pointwise training [1,11,12] gen-
erally partitions the whole scene into blocks and each block
is sampled with fixed number of points. In our framework,
a single indoor scene is represented by a graph containing
a set of surface patches. As seen from Table 2, the train-
ing time of [12] and [1] in our implementation on the same
GPU is around 13h and 4h, respectively. In comparison, our
SPG-based training time is only 6min, which are signifi-
cantly faster than pointwise training. In Table 3, we present
the data statistics of running time in seconds for each step

of indoor scene semantic segmentation test on Area 5 from
S3DIS dataset. The main computation time is patch gener-
ation, since the whole point clouds are taken as input. The
patch label prediction is only 0.5 s owing to the patch repre-
sentation of indoor scene.

Quantitative results and comparisons The quantitative
results of our method and comparisons with previous state-
of-art methods [1,2,12,21,25] on S3DISArea 5 are presented
in Table 4. Here, we adopt our layout-object-aware PGC-
Net for indoor scene segmentation. Patch-MLP denotes a
MLP classifier using our extracted surface patches and their
features. The MLP classifier is the same one as in PGC-
Net. Table 4 shows that Patch-MLP can achieve similar
performance as [1], especially in room layout classes such
as ceilings, floor, wall, column, and door. This suggests
our surface patch representation has advantage of retriev-
ing room layout structures. The results also clearly show
our PGCNet framework performs comparable segmenta-
tion with much faster training process. Notably, we perform
particularly better in ceilings, floor and wall, as well as
objects that is not easy to distinguished from room lay-
outs, such as bookcase and board. This is presumably due to
our patch representation and layout-object-aware augmented
training. On the other hand, our framework could not per-
form accurate segmentation as other competitive methods

123



PGCNet: patch graph convolutional network for point cloud segmentation of indoor scenes 2415

Fig. 5 Comparisons of semantic segmentation results on S3DIS scenes using PointNet [1], DGCNN [12] and our method

Fig. 6 Visualizations of semantic segmentation results on S3DIS scenes. Given indoor point clouds (a), surface patches are generated (b). Our
PGCNet framework can achieve effective semantic segmentation performance (c)
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for segmenting interior objects with complex shape such as
sofa.

The rich labeling of ScanNet makes semantic segmenta-
tion more challenge. Using patch representation, our frame-
work can successfully segments major layout structures and
main indoor objects such as wall, floor, table, and bed. Other
objects with complex shapes such as curtain and sink are
difficult to distinguished from cluttered scenes. The results
and comparisons of ScanNet semantic labeling accuracy is
reported in Table 5. Our proposed framework outperforms
[1] and achieves similar overall accuracy as [11] without
pointwise multi-resolution strategy.

Qualitative results We compare our method with PointNet
[1] and DGCNN [12]. Figure 5 shows visual comparisons
of segmentation results on scenes from S3DIS. Notably,
our method correctly segments door while others can not.
Our SPG presentation carries out more smooth results than
others, e.g., bookcase and table. Some chair legs and desk
legs can be captured and correctly segmented, which maybe
attributed to our relative features computed at neighboring
edges.

More segmentation results on various types of indoor
scenes are displayed in Fig. 6. Given an input indoor scene
from S3DIS dataset, our method first generates surface
patches as seen from Fig. 6b. Our PGCNet framework is able
to correctly classify room layout including ceilings, floors,
and walls as illustrated in Fig. 6c. Opened doors are almost
segmented correctly in these scenes, while columns are dif-
ficult to distinguish from walls. Most indoor objects such as
table and chair can be retrieved as well. The patches pasted
on the wall are difficult to fully segmented, which might be
part of bookcase, board or clutter.

Ablation studies To better understand the influence of
each network component, we analyze them individually
by removing them from PGCNet, as shown in Table 6.
We conduct these studies on Area 5 of S3DIS with the
same network parameters, using proposed layout-object-
aware PGCNet-basedmethod as best performance reference.
NoLO model removes layout-object classification informa-
tion, NoDGU model removes whole DGU module, NoDEL
removes DEL and use fixed graph instead. We can see
from ablation studies, removing layout-object prediction
decreases the performance by nearly 2% mIoU. The DGU
module and DEL accounts for 14.70% and 4.46% mIoU
performance, respectively. This study suggests that pro-
posed DGUmodual significantly improves network’s ability
of patch feature extraction. It can also be observed that
dynamic edge does play an important role in the final
performance.

Table 6 Ablation studies on the
S3DIS test set

Model ΔmIoU

Best reference 0.00

NoLO − 2.27

NoDGU − 14.70

NoDEL − 4.46

ΔmIoU denotes the difference in
mIoUwith respect to the best ref-
erence

6 Conclusions

In this work, we present a novel indoor scene segmentation
framework dubbed PGCNet which uses surface patches as
an efficient data representation for large-scale point clouds.
Our method first extracts surface patches from indoor scene
point clouds and feeds them into PGCNet. The proposed
DGU module dynamically updates graph structures at each
U-shape encoder to aggregate hierarchical edge features. Our
network generates labels for indoor scene data, performing
effective semantic segmentation results. In the future,weplan
to further improve patch generation and extend PGCNet to
other indoor tasks.
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