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Abstract: Depth maps are acquirable and irreplaceable geometric information that significantly enhances traditional color images.
RGB and Depth (RGBD) images have been widely used in various image analysis applications, but they are still very limited due to
challenges from different modalities and misalignment between color and depth. In this paper, we present a Fully-Aligned Fusion
Network (FAFNet) for RGBD semantic segmentation. To improve cross-modality fusion, a new RGBD fusion block is proposed,
features from color images and depth maps are first fused by an attention cross fusion module and then aligned by a semantic
flow. A multi-layer structure is also designed to hierarchically utilize our RGBD fusion block, which not only eases issues of low
resolution and noises for depth maps but also reduces the loss of semantic features in the upsampling process. Quantitative and
qualitative evaluations on both the NYU-Depth V2 and the SUN RGB-D dataset demonstrate that our FAFNet model outperforms
state-of-the-art RGBD semantic segmentation methods.

1 Introduction

With the rapid development of deep learning techniques, semantic
segmentation has become an important research direction in the field
of computer vision. It refers to the process of segmenting an image
into regions that belong to different classes at a pixel level. Beyond
the region segmentation, semantic segmentation predicts the classi-
fication for each region through deep learning techniques[1–6], thus
it can provide a higher-level understanding of objects in the input
image than traditional image segmentation methods that are based
on low-level features[7, 8].

Although learning-based semantic segmentation has made great
progress in the last decade, it is still limited due to the lack of
geometric information in the color image. For instance, it can nei-
ther separate different objects sharing the same boundary and high
color similarities nor recognize objects that contains very complex
textures.

A depth map is an image containing information related to the
distance to the object’s surface from the point of view. Though depth
is not full 3D geometry, it provides abundant geometric informa-
tion of objects that is hardly presented in color images, thus it is
widely used in various applications, such as shape completion[9],
drone navigation[10], etc. With the popularization of commercial
depth sensors, such as Microsoft Kinect and Intel RealSence, depth
maps have become cheaper and easier to acquire and can upgrade
RGB color images to RGBD images. Therefore, more and more neu-
ral networks in the literature have been proposed for RGBD semantic
segmentation[11–15]. Though RGBD-based methods significantly
improve the segmentation accuracy, fusing depth maps with color
images in the semantic segmentation task is still very challenging
due to three main reasons:

1) Color and depth are completely different modalities, directly
combining color pixels and depth ones by channel concatenating (to
RGBD pixels) may introduce some ambiguities, as the neural net-
work can not establish a sufficient correlation between two irrelevant
modalities.

2) Color and depth pixels are not fully aligned, since they are
captured by different lens[16]. Though image registration is usually
taken, the misalignment is still unavoidable, especially for consumer
RGBD cameras, such as Microsoft Kinect.

3) Finally, depth maps always have lower resolution and more
noises than color images. Depth maps may mislead the seman-
tic segmentation if low-quality depth features are fused to color
features.

To overcome the aforementioned challenges, we propose a new
Fully-Aligned Fusion Network (FAFNet) for RGBD semantic seg-
mentation based on hierarchical semantic flows in this paper.
According to the two-modality nature, we employ a two-stream
framework as many recent state-of-the-art RGBD segmentation
networks[13]. To solve the misalignment issue, a Flow Alignment
Module (FAM) is first proposed, that employs a semantic flow to
align color and depth pixels at higher precision. For deeper cross-
modality feature fusion, we also designed an attention-based mod-
ule called Attention Cross Fusion Module (ACFM). The channel-
attention mechanism can dynamically adjust the weights of two
modalities to fit each other and use a cross fusion method to extract
more effective feature information. Finally, we packed the FAM and
ACFM into one block called RGBDFuse, and then applied it with
a multi-layer structure in the FAFNet, which not only enhances the
effectiveness of our FAFNet but also overcomes the low resolution
and noise drawbacks.

Our contributions can be summarized as followed:

• A FAFNet model for RGBD semantic segmentation is introduced,
a hierarchical alignment and fusion structure is designed based on
the widely-used two-stream framework∗.
• A new RGBDFuse network block for color and depth fusion is
proposed, it integrates an attention cross fusion module and two
semantic flow modules, which overcomes the cross-modality and
misalignment challenges.
• The segmentation accuracy of the proposed method has been eval-
uated on both the NYU-Depth V2 and the SUN RGB-D benchmark,
and comparison with state-of-the-art methods has also been done and
presented, which demonstrates the validity of our method.

∗The source codes are available at xxx [the link will be inserted after the

acceptance of the paper]
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Fig. 1: Overview of existing two-stream neural network framework for RGBD semantic segmentation. Two modalities are processed by
two-stream backbone and fused at the end of encoder. This classical method does not recognize the difference between two modalities.

2 Related Work

2.1 RGB Semantic Segmentation

The pioneer of semantic segmentation for natural color images is
Fully Convolutional Network (FCN)[1]. It replaces the fully con-
nected layer with a deconvolutional layer with upsampling to achieve
pixel-level classification but still suffers from the problem that the
upsampled images are not fine enough. U-net[17] uses asymmet-
ric encoder-decoder structure to progressively upsample images to
their original size while concatenating high and low-level features
together through skip connection to improve accuracy. The Deeplab
series[3, 18–20] have introduced atrous convolution to expand the
receptive field of convolution kernels and capture contextual infor-
mation efficiently while keeping parameters constant. RefineNet[21]
makes use of the feature maps of each layer, which makes the seg-
mentation more accurate. It also uses residual connection inside the
RefineNet Block to make the loss easier to propagate.

Our model in this work is based on the framework of FCN with
an encoder-decoder structure. And in the decoder part, high and low-
level features are aligned using the FAM to progressively recover the
resolution.

2.2 RGBD Semantic Segmentation

A natural manner to integrate the depth map is using depth informa-
tion as the fourth channel input, as earlier RGBD networks did[22].
However, the results are not effective, due to the different modalities.
Inspired by[23], Wang et al. proposed a two-stream network frame-
work to extract specific information from color and depth. A feature
transformation module in the middle of the network is designed to
explicitly extract common and unique features from color and depth
features through the fully connected layer. And then the unique and
common features of both are concatenated and fused with a two-
stream fully connected layer to the deconvolution layer. Hazirbas et
al.[11] proposed a similar two-stream network (FuseNet) framework
based on SegNet[24]. They added mid-level depth features to mid-
level color features in the encoder by an element-wise addition, and
fused the deeper depth features into the color features with deeper
network layers. Wang et al. proposed a depth-aware CNN that added
a depth similarity term to the normal convolution, and adjusted the
weight of surrounding pixels contributing to the central pixels by
the similarity of depth values during the convolution operation[25].
Chen et al. proposed a two-stream cross-modality network in which
color and depth features were calibrated to remove noises. Then
these features are aggregated by attention and gating mechanisms
to obtain two weighted feature maps and added together in the final
segmentation[13].

The aforementioned networks have certain limitations, they do
not recognize the differences between color and depth images.
Color and depth images belong to different modalities, and simple
concatenating or summing cannot make full use of the complemen-
tarity among multiple modalities. In many cases, these two different
modalities may suppress each other if they are not well aligned. In

this paper, color and depth features are aligned by multi-layer seman-
tic flows modules to get the complementary features, which helps to
build an obvious correlation between the two modalities.

2.3 Flow Alignment

The misalignment issue requires image registration between depth
and color images, it is a process of transforming different sets of data
into one unique coordinate system[26]. Optical flow is a widely-used
image registration method, it is originally proposed in motion detec-
tion to describe the motion of an observed target, surface, or edge
caused by motion relative to the observer. In recent years, optical
flow has been used more and more extensively in computer vision-
related tasks[27]. Semantic flow proposed by Li et al. extends the
concept of optical flow to semantic segmentation[4]. A FAM is pro-
posed to predict the semantic flow between neighboring layer feature
maps and efficiently propagate and align high-level features into
high-resolution features.

Using semantic flow, semantic features can flow effectively from
higher layers to lower layers to reduce the information loss caused
by semantic misalignment, but it relies too much on the ability of
the backbone to extract features. Offset errors in the backbone tend
to be enlarged in the cross-modality feature alignment, which may
lead to invalid segmentation results. For this sake, we extended the
FAM module to an RGBDFuse block by integrating ACFM. The
RGBDFuse block aligns and cross-fuses color and depth features.
It not only significantly reduces offset errors but also enhances the
feature extraction ability of the backbone.

Existing feature alignment approaches only align single modal-
ity features. For instance, classic optical flow methods align pixels
between adjacent frames in videos, the feature alignment employed
in learning-based object detection aligns the position of features and
anchors[28], and Li et al.[4] and Huang et al.[29] proposes flow
alignment networks that align high-level and low-level image fea-
tures. In contrast, our FAFNet further aligns the features between
different modalities (i.e. RGB and depth), it extends the feature
alignment to the full RGBD semantic segmentation network, thus
achieves higher accuracy.

3 Methodology

3.1 The FAFNet structure

RGBD semantic segmentation needs to extract features from both
color and depth images separately and then fuse them, which is
very challenging due to their different modalities. Fig.1 shows
a classical two-stream network framework for RGBD semantic
segmentation[1]. In the encoder, color and depth features are
extracted separately in a two-stream backbone and then fused
together in the end. In the decoder, the fused features are upsampled
by using bilinear or de-convolutional layers to recover resolution
and obtain the final segmentation results. Though the two-stream
network outperforms a single-stream method, it still does not help
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Fig. 2: Overview of our FAFNet. It is based on the encoder-decoder structure. The inputs of our network are two images representing color
and depth respectively. Each pair of images is processed by RGBDFuse block and sent back to the backbone to fuse with original color and
depth features. The copy of each RGBDFuse block will be propagated to the corresponding layer of decoder to align with high-level features.

existing methods overcome the misalignment issues from either the
different modalities or the upsampling process, as introduced in
Section 1.

In this paper, we propose a new neural network for RGBD seman-
tic segmentation. The advantage of this network is the fully-aligned
feature fusion. As shown in Fig.2, a new cross-modality fusion block
called RGBDFuse is proposed. It cross-fuses color and depth fea-
tures and aligns them into a unified feature map. And a semantic flow
module called FAM is integrated into both the RGBDFuse block
and the decoder part of our FAFNet, which significantly eases the
misalignment issue of RGBD images.

Another important advantage of our FAFNet is the multi-layer
fusion structure, compared to the single fusion module in the clas-
sical two-stream networks. In our multi-layer structure, multiple
RGBDFuse blocks in the encoder and multiple FAMs in the decoder
are designed. For each layer in the encoder, color and depth fea-
tures are sent to the RGBDFuse block for fusion, instead of the next
layer of backbone. The RGBDFuse block produces two cross-fused
features, which are sent back to the backbone to fuse with original
color and depth features respectively. The main feature is kept as a
low-level feature in the decoder. For each layer in the decoder, FAM
aligns the high-level feature from the previous layer and the low-
level feature from the corresponding layer in the encoder. In the end,
aligned features are sent to the subsequent layer of the decoder.

Compared to the classical two-stream network, our multi-layer
structure aligns not only color and depth features but also high-
level and low-level features. It overcomes semantic feature mis-
alignment caused by convolution, upsampling, downsampling, and
residual connection in the intermediate layers[4]. No matter in which
layer RGBD or high/low-level features become misaligned, they
will be re-aligned to provide fully-aligned cross-modality features.
Together with the RGBDFuse and FAM, we regard our FAFNet as a
fully-aligned fusion network.

3.2 The RGBDFuse block

The purpose of our RGBDFuse block is to fuse cross-modality
color and depth features (RGBfeat and Depthfeat respectively)
into one feature Featfused. As shown in Fig.3, it consists of an
ACFM module and two FAM modules. The ACFM module employs
a cross fusion method to adjust weights for both color and depth fea-
tures. The FAM modules align these two features through a warping
operation with semantic flows. We note these two warped features
as RGBwarped and Depthwarped. Finally, an element-wise addi-
tion is used to fuse the warped features to obtain fusion features
Featfused containing rich semantic information:

Featfused = RGBwarped ⊕Depthwarped (1)

Fig. 3: The RGBDFuse block. An ACFM and two FAMs are
employed to fuse complementary features and align two modalities.

Besides, RGBwarped and Depthwarped are added back to the
backbone features and propagated to the subsequent layers, which
gets sufficient features for the higher levels:

RGB ← RGB ⊕RGBwarped (2)

Depth← Depth⊕Depthwarped (3)

In contrast with traditional channel concatenation, our RGBD-
Fuse block explicitly builds the feature correspondences among
different modalities based on the attention vectors of concate-
nated features, which achieves the re-calibration of cross-modality
feature weights. The re-calibrated weights can emphasize impor-
tant features while suppressing redundancy features simultaneously.
Besides, features from different modalities are highly complemen-
tary, our RGBDFuse block employs a cross-fusion mechanism (i.e.
the bidirectional element addition) to deeply fuse them, which fur-
ther improves the accuracy of feature cross-fusion. More details of
ACFM and FAM will be introduced in the two subsections below.

3.3 The ACFM module

To enhance the feature extraction and alignment, we design an
ACFM to obtain fused features with richer semantic information.
Color and depth features are fed into the ACFM before alignment.
As shown in Fig.4, global channel descriptorsGrgb/Gdepth are first
extracted. Then attention vectors Lrgb/Ldepth are further squeezed
by Multilayer Perceptron (MLP) and Sigmoid functions, and merged
with the input color/depth features by channel-wise multiplication.
Merged color and depth features (i.e. Mrgb and Mdepth) are cross-
fused with each other’s original input to obtain rich complementary
information. In the remainder of this subsection, we will introduce
all of these important steps.

Firstly, the global descriptor is obtained using global average
pooling[30]:
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Fig. 4: The ACFM module. Color and depth features are mergerd by global descriptor to adjust the weight of different channels separately,
and fused by cross fusion method to aggregate their complementary features into unified features.

G = Fgp(RGBfeat �Depthfeat), G ∈ R1×1×2C (4)

where G is the global channel descriptor, Fgp denotes the global
average pooling, C represents the channel number of features, and
� represents the channel concatenating operation. We obtainedGrgb
and Gdepth for both color and depth features respectively.

Secondly, this global channel descriptor is then processed by
MLP[31] followed by a Sigmoid normalization operation to obtain
an attention vector L:

L = σ(Fmlp(G)), L ∈ R1×1×C (5)

where Fmlp is multi-layer perceptron and σ represents the Sigmoid
function. The purpose of MLP and Sigmoid function is to extract
channel weight information. In our network, a fully connected layer
is used to implement MLP. It squeezes the channel number of the
global channel descriptor, which allows the network to build the
correlation between channels of different modalities and use this
correlation to automatically adjust the channel weights for the cur-
rent modality. Sigmoid function scales the channel weight of MLP’s
output to [0, 1].

We then fuse the attention vector with one of the original inputs in
a channel-wise multiplication. Taking the depth feature as an exam-
ple, we multiply the attention vector Ldepth with depth feature input
Depthfeat to obtain the merged depth feature Mdepth:

Mdepth = Depthfeat ⊗ Ldepth, Mdepth ∈ RW×H×C (6)

where W and H are the width and the height of the feature map. In
the same way, we get merged color features Mrgb:

Mrgb = RGBfeat ⊗ Lrgb, Mrgb ∈ RW×H×C (7)

The merged features boost important channel features while sup-
pressing redundancy ones according to the characteristics of the
current modality. The boosted features contain features unique to
the current modality, which is complementary to the other modality.

Thirdly, a cross fusion is applied to combine the merged fea-
tures, along with the original input of other modalities. Taking the
depth features as an example, Mdepth is added with RGBfeat in
an element-wise manner to fuse two modalities’ features:

Depthfused = Mdepth ⊕RGBfeat, Depthfused ∈ RW×H×C

(8)
In the same way, we get RGBfused features:

RGBfused = Mrgb ⊕Depthfeat, RGBfused ∈ RW×H×C

(9)
The cross fusion method fuses merged feature and another modal-

ity’s original input, which aggregates two modalities’ complemen-
tary features into unified features.

3.4 The FAM module

For the alignment of high-level and low-level features, most exist-
ing neural networks use the bilinear interpolation method for feature
upsampling[32]. To recover pixels of the downsampled image, four
neighboring pixels are interpolated in a bilinear manner again. How-
ever, recovering high-resolution features only using lower-resolution
inputs is an under-constraint problem, it tends to result in misalign-
ment between feature maps. As pointed out by Li et al.[4], position
correspondence between feature maps needs to be explicitly and
dynamically established to resolve the actual misalignment.

For color and depth features, we argue that the semantic flow
features can be aligned not only between high-level and low-level
features, but also between different modalities. The misalignment of
different modalities can cause features to be shifted in the fusion pro-
cess, resulting in inaccurate feature transfer and making the fusion
much less effective. Aligning color and depth modalities can fully
expose their unique features.

By integrating multiple FAM densely into our FAFNet, we extend
flow alignment to full alignment, which reduces the misalignment
issue between different modalities and avoids the feature uneven
issue. Whenever RGBD or high-level features become misaligned
due to operations such as convolution, upsampling, downsampling,
and residual connection, the FAM will recalibrate the features so that
they can be well aligned all the times.

In our FAFNet, FAM is used in both the RGBDFuse block and
the decoder. FAM in the RGBDFuse block aligns color and depth
features from the previous layer. And FAM in the decoder aligns
features produced by the RGBDFuse and features from the previous
layer in the decoder. Since they share the same structure, we will
introduce the detail of this structure below.

As shown in Fig.5, given two feature maps Xi, Xj , we firstly
process them with a 1× 1 convolution to unify their numbers of
channels to have X ′i and X ′j . And then we use bilinear interpolation
to upsample the lower resolution feature mapX ′j toX ′′j to match the
size of X ′i . If Xi and Xj represents RGBfused and Depthfused
features respectively in the ACFM module, we skip this upsampling
operation since their sizes are the same. Then these two feature maps
are concatenated together using the channel concatenating operation
and sent to the flow extraction layer to extract the semantic flow
feature Xflow through a convolution process:
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Fig. 5: The FAM module. Two input feature maps are combined to generate a flow feature to align high-level and low-level features as well as
color and depth features.

Xflow = Convflow(X ′i �X
′′
j ), Xflow ∈ RW×H×2 (10)

Xflow has two channels that represent the offset of pixels in X and
Y directions respectively. Based on Xflow , positions of X ′j can
be shifted to the corresponding positions of X ′i through a warping
operation.

Firstly, a spatial grid Ω ∈ RW×H×2 is defined, and the number
of channels is the same as the channel number ofXflow . The size of
this spatial grid is the same as the size of the feature map X ′i . Values
in each channel are the spatial coordinates corresponding to the input
feature map, and their values are divided into normalized coordinates
distributed at uniform intervals according to W and H . Let u, v be
the coordinate positions of the spatial grid Ω, where u is the integer
coordinate in the X-direction and v is the integer coordinate in the
Y-direction. Then the value of each feature point on the spatial grid
is converted as:

Ω(u, v) = (
2u−W + 1

W − 1
,

2v −H + 1

H − 1
) (11)

where u ∈ [0,W ) and v ∈ [0, H). Then, we add the calculated
Xflow with the spatial grid Ω to obtain a new spatial grid Ω′. The
formula is:

Ω′ = Ω⊕Xflow, Ω′ ∈ RW×H×2 (12)

Due to the addition of the semantic flow field offsets, the value
of each feature point in Ω′ represents the final feature position of
the input feature map. According to the values corresponding to the
coordinates in Ω′, the values of the corresponding feature points are
found from the corresponding coordinate positions of the input fea-
ture map. The final output high-resolution feature map Xwarped is
finally generated:

Xwarped = Warp(X ′j ,Ω
′) (13)

Here the warping operation is used to compute the final feature
map by differential image sampling[33]. This warping operation
makes it possible to accurately align the low-resolution high-level
feature maps to the corresponding positions of the high-resolution
low-level feature maps, as well as align different modalities, thus
reducing information loss and enhancing the feature extraction
capability of the proposed network.

4 Evaluations and Discussion

4.1 Dataset

We evaluate our FAFNet on two widely-used RGBD datasets: NYU-
Depth V2[34] and SUN RGB-D[35]. The NYU-Depth V2 dataset
consists of many video sequences of various indoor scenes recorded
by a Microsoft Kinect V1. It has 1449 RGBD images in 40 classes
that are all densely labeled, which are available as GroundTruth
(GT) in this database for the training and testing of our FAFNet.
We take 795 images for training and 654 for testing. The SUN
RGB-D dataset consists of 10,335 RGB-D images in 37 classes that
are all densely labeled, and available as the second GT. They are
captured by 4 different sensors, including Intel RealSence, Asus
Xtion, Microsoft Kinect V1/V2, thus have different image sizes.
These devices acquire both RGB images by color cameras and corre-
sponding depth images by depth sensors, such as lasers and infrared
cameras for Kinect V1/V2.

We take 5285 images for training and 5050 for testing. Though
SUN RGB-D dataset has more images than the NYU-Depth V2
dataset, images in NYU-Depth V2 dataset are annotated more care-
fully. Therefore, the statistics on the NYU-Depth V2 dataset usually
better reveals the accuracy of RGBD semantic segmentation, but the
SUN RGB-D dataset is still widely used to evaluate the robustness
and generalization ability.

As a preprocessing process, we use random scaling, random crop-
ping, horizontal flipping, and normalization to enhance the dataset.
For NYU-Depth V2 dataset, we initialize image size to 464×464.
For SUN RGB-D dataset, we initialize image size to 448×448. The
single-channel depth image is converted to a three-channel HHA
image. The HHA image contains the horizontal disparity, the height
to the ground, and the surface normal vector angle, thus makes bet-
ter use of the depth information. These attributes are hard for the
network to compute directly from the depth image, which enhances
the geometric structural information in the depth image. For more
details of HHA images please refer to[36].

4.2 Implementations

We implemented our FAFNet using the Pytorch 1.8.1 framework, in
Ubuntu 18.04 operating system, with Intel 10900KF CPU, NVidia
GeForces RTX 3090 graphics card, and 32G RAM.
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We use the Mean Intersection over Union (MIoU) to measure
the semantic segmentation accuracy. In the training stage, the pre-
trained ResNet101[37] is used as the backbone, the learning rate
is set to 0.005, and the scheduler strategy we adopted is Step
Decay+Warmup[38]. The batch size is set to 8, and the number of
iterations is 40,000 in total. We use a multi-scale strategy to boost
the performance of our network in the inference stage.

4.3 Ablation study

Uniform hyper-parameters are used to explore which module has the
greatest impact on the overall segmentation accuracy. We choose the
two-stream Deeplabv3Plus[3] as the baseline, where color and depth
features are fused in element-wise summation.

Table 1 Statistics of ablation study for FAM modules on the NYU-Depth V2 Dataset

Method MIoU Pix.Acc

Without any FAM 52.3% 77.4%
With FAM in decoder 52.8% 77.7%
With FAM in RGBDFuse 53.1% 78.1%
With all FAMs 54.0% 78.3%

Table 1 shows the experimental statistics of our ablation study on
FAM modules, which demonstrates the effectiveness of our fully-
aligned fusion network. Without any FAM, the MIoU is only 52.3%,
and the pixel accuracy is only 77.4%. If both the FAM in our RGBD-
Fuse and the FAM in the decoder part are used, the MIoU reaches
54.0%, while the pixel accuracy reaches 78.33%. And if only one
of these two FAMs is used, it still improves the MIoU and the pixel
accuracy, but it does not exceed ones with all FAMs. The ablation
study on the ACFM modules has been applied as well. Removing
the ACFM module will lead to about 1% drop for both the MIoU
and the pixel accuracy, even though all FAMs are used. It shows the
ACFM module also contributes to the improvement of our method,
as it improves the feature extraction of the backbone.

The fully-aligned fusion network is the key of our method to
overcome the misalignment issue of RGB and depth. Fig.6 shows
such an example from the NYU-Depth V2 dataset. Since RGB
image and depth image are captured by different sensors, they con-
tains unavoidable misalignment even though they are registered, as
shown in the RGB-depth overlay in Fig.6(c). The semantic flow
estimated in our network shows the depth pixels around the bound-
ary of the kitchen table should be shifted to the left to align with
the RGB image, as shown in Fig.6(d). We further extract feature
maps of both RGB and HHA images from the ACFM module of the
first RGBDFuse block, to compare their alignment before and after
cross-modality feature alignment. The overlay of RGB and HHA
features in Fig.6(f) is distinctly better aligned than the overlay in
Fig.6(e), which reveals the validity of our cross-modality feature
fusion network.

4.4 Comparison

Table 2 Comparison with SOTA methods on the NYU-Depth V2 Dataset

Method Backbone Data MIoU Pix.Acc

ShapeConv[39] ResNeXt-101×2 RGB-HHA 51.3% 76.4%
ACNet[40] ResNet-50×2 RGB-Depth 48.3% -

RDFNet[41] ResNet-152×2 RGB-HHA 50.1% 76.0%
CANet[12] ResNet-101×2 RGB-Depth 51.2% 76.6%
NANet[42] ResNet-101×2 RGB-HHA 52.3% 77.9%

SA-Gate[13] ResNet-101×2 RGB-HHA 52.4% 77.9%
Ours ResNet-101×2 RGB-HHA 54.0% 78.3%

Table 2 shows a quantitative comparison with state-of-the-art
(SOTA) methods on the NYU-Depth V2 dataset. Both the MIoU and
the pixel accuracy of our method outperform other SOTA networks,
the MIoU of our method exceeds SA-Gate about 1.6%, the pixel
accuracy of our method exceeds SA-Gate about 0.4%.

Table 3 Comparison with SOTA methods on the SUN RGB-D Dataset

Method Backbone Data MIoU Pix.Acc

ShapeConv[39] ResNeXt-101×2 RGB-HHA 48.6% 82.2%
ACNet[40] ResNet-50×2 RGB-Depth 48.1% -

RDFNet[41] ResNet-152×2 RGB-HHA 47.7% 81.5%
CANet[12] ResNet-101×2 RGB-Depth 49.3% 82.5%
NANet[42] ResNet-101×2 RGB-HHA 48.8% 82.3%

SA-Gate[13] ResNet-101×2 RGB-HHA 49.4% 82.5%
Ours ResNet-101×2 RGB-HHA 49.2% 82.3%

Table 3 shows a quantitative comparison with state-of-the-art
methods on the SUN RGB-D dataset. Our FAFNet is at the fore-
front of state-of-the-art methods, only 0.2% weaker than SA-Gate,
reflecting the robustness and generalization ability of our network.
The main reason why we did not achieve the best results on the SUN
RGB-D dataset is that there are a large number of images with differ-
ent resolutions in SUN RGB-D, and padding these images affects the
accuracy of the flow field. In addition, it can be seen from the table
that most existing work also rarely achieves the best performance on
both NYU-Depth V2 and SUN RGB-D datasets.

Table.4 shows the class-wise segmentation accuracy of our net-
work compared with SA-Gate[13]. It can be seen that our network
shows significant improvement in most classes, 29 out of 40 classes
exceeded SA-Gate, especially in the class bag, which shows a 7%
improvement. The average growth of these 29 classes is 2.78%, in
contrast, the average decrease of the rest 11 classes is only 1.5%.
Some of the classes that are prone to misalignment in the depth map,
such as refridge, tv, and paper, our method obtains about 3-4%
improvement in average.

Fig.7 shows a qualitative comparison of our method with SA-
Gate[13]. To visualize the segmentation results, we applied a pseude
coloring to the regions of differnt categories, as well as the ground
truth. It is very challenging to segment the black chair in the first
row, even though the HHA image provides supplementary geometric
information. It can be seen that our FAFNet distinguishes the con-
tour of the chair very well, while SA-Gate mixes the chair with the
floor. The floor lamp in the second row is also difficult to distinguish
as well, SA-Gate lost the lamp pillar while our method succeeded
to preserve this pillar. There are obvious errors for the SA-Gate seg-
mentation of the bedsheet and bedside table in the third row, while
our FAFNet segments them much better, indicating that our network
has strong feature extraction capabilities.

5 Conclusion and Future Work

In this paper, we present a new two-stream neural network for RGBD
semantic segmentation called FAFNet, which can fully align color
and depth features. A cross-modality feature alignment and fusion
block called RGBDFuse is proposed, it integrates two semantic
flows and an attention cross fusion model to overcome the RGBD
misalignment issue and the cross-modality challenge. A hierarchi-
cal structure, that applies the RGBDFuse block and flow alignment
modules for features at multiple layers, is employed to further ease
the resolution and noise difference between depth and color images.
Using the NYU-Depth V2 and SUN RGB-D dataset, evaluations
including ablation studies and elaborated comparison show that
the proposed FAFNet achieves higher accuracy than state-of-the-art
RGBD semantic segmentation.

One limitation of our method is that our FAFNet does not man-
age to segment small objects well, this drawback can also be found
in many other RGBD semantic segmentation methods. We believe
more improvement could be made to recognize small objects in the

IET Research Journals, pp. 1–8
6 c© The Institution of Engineering and Technology 2015



Fig. 6: Visualization of our feature alignment results on one example from NYU-Depth V2 dataset. The overlay of RGB and depth images
clearly reveals their misalignment in (c). The estimated semantic flow is visualized using colors and arrows in (d). The direction of white arrows
shows the flow direction, while the length of the white arrows reveals the strength of semantic flow at small grid. Feature maps for RGB and
depth are overlayed to show their misalignment in (e), which is alleviated if semantic flow is employed in (f). The zoom-in insets on the right
emphasize how our semantic flow eases the misalignment issue on the boundary of the kitchen table.

Table 4 Class-wise segmentation results (MIoU) on NYU-Depth V2 Dataset

wall floor cabinet bed chair sofa table door window bkshelf

SA-Gate 80.8% 88.6% 64.4% 75.1% 67.2% 68.5% 48.5% 46.6% 52.3% 46.4%
81.2% 88.8% 63.4% 72.9% 68.6% 69.5% 50.8% 46.0% 50.5% 49.9%
picture counter blind desk shelf curtain dresser pillow mirror mat

SA-Gate 66.6% 71.8% 60.5% 26.6% 22.2% 60.1% 54.1% 51.1% 58.1% 42.5%
Ours 66.9% 72.4% 59.2% 30.5% 21.1% 59.6% 55.4% 54.8% 55.3 42.7%

cloths ceiling books refridge tv paper towel shower box board
SA-Gate 24.1% 80.9% 30.5% 61.1% 65.3% 32.9% 43.3% 41.2% 13.1% 78.3%

Ours 26.4% 80.0% 34.9% 65.2% 69.6% 35.9% 45.8% 45.9% 15.2% 85.0%
person stand toilet sink lamp bathtub bag othstr othfurn othprop

SA-Gate 83.2% 41.0% 81.0% 62.6% 50.7% 56.4% 5.2% 31.2% 21.8% 41.5%
Ours 87.8% 46.9% 84.7% 59.7% 53.4% 55.0% 12.2% 32.6% 22.8% 42.8%

Fig. 7: Comparison with the SOTA method SA-Gate[13] on three examples from the NYU-Depth V2 dataset
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upsampling procedure of high-level features. Though our method
reaches the highest accuracy on the NYU-Depth V2 dataset, but not
on the SUN RGB-D. One future direction is thus to improve the
compatibility of our method on more messy datasets. Another future
direction is to accelerate our FAFNet to achieve real-time perfor-
mance, which may require simplifying our FAFNet to a lightweight
version.
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