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Figure 1: Our interpolation technique takes as input a series of rough vector key drawings (shown in light gray), and produces intermediate
drawings (in black) that preserve the input drawing style(s). It is based on an interactive stroke distribution synthesis algorithm that introduces
a minimum amount of temporal artifacts (here with the {3,3,0.05} strategy).

Abstract
In traditional 2D animation, sketches drawn at distant keyframes are used to design motion, yet it would be far too labor-
intensive to draw all the inbetween frames to fully visualize that motion. We propose a novel efficient interpolation algorithm
that generates these intermediate frames in the artist’s drawing style. Starting from a set of registered rough vector drawings,
we first generate a large number of candidate strokes during a pre-process, and then, at each intermediate frame, we select
the subset of those that appropriately conveys the underlying interpolated motion, interpolates the stroke distributions of the
key drawings, and introduces a minimum amount of temporal artifacts. In addition, we propose quantitative error metrics to
objectively evaluate different stroke selection strategies. We demonstrate the potential of our method on various animations
and drawing styles, and show its superiority over competing raster- and vector-based methods.

CCS Concepts
• Computing methodologies → Non-photorealistic rendering; Animation;

1. Introduction

Hand-made 2D line animations have the power to convey motion
in a particularly expressive manner, at the expense of an extremely
labor-intensive process. A line animation is traditionally produced
through at least two stages: a rough stage, where sketched strokes
are drawn at relatively distant keyframes, giving the gist of the mo-
tion; and a clean stage, where clean line drawings are produced
between keyframes relying on the rough drawings for consistency,
yielding smooth lines drawn at a high frame rate that convey a fluid
motion. The focus of this paper is on the interpolation of rough line
drawings at a high frame rate. It may be used as a form of pre-
visualization for motion design prior to the clean stage, to give the
animation a sketchy look instead of a clean look for artistic pur-
poses, or even to augment a collection of sketchy drawings. We

target an interactive solution to grant sufficiently fast interpolation
feedback when modifying the keyframes or their timing and spac-
ing, which makes our approach compatible with recent computer-
assisted 2D animation systems (e.g., [XWSY15, EBB23]).

What makes rough line inbetweening a difficult problem is that
rough key drawings (i.e., line drawings in keyframes) are located
far apart in time and space. Moreover, they are usually made of a
different number of strokes with different lengths and at different
locations along the depicted shape. An additional difficulty arises
due to the sketchy nature of rough drawings: the production of
rough animations at high frame rates is prone to visual artifacts
that may disturb the perception of the underlying motion, such as
popping, flickering, and residual motion. Precisely defining, mea-
suring, and controlling those artifacts represents an extra challenge.
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As detailed in Section 2, most existing computer-aided inbe-
tweening techniques work on clean line drawings provided at close
keyframes in time (i.e., tight inbetweening [WNS∗10]). Since the
key drawings do not differ dramatically in terms of shape, and the
number of lines is similar from one keyframe to the next, inbe-
tweening is performed directly on clean lines. This requires solving
two problems: a correspondence problem, where each line in a key
drawing must be matched to a line in the next key drawing; and an
interpolation problem, where a single clean line must be generated
at each intermediate frame that interpolates a pair of matched lines.
These two problems must be restated in the case of rough draw-
ings inbetweening: correspondences must be established between
groups of strokes representing the same (part of a) shape, and in-
terpolation must be performed between heterogeneous groups of
strokes. In the rest of this paper, we only address the interpolation
problem, assuming groups of strokes have already been matched
with each other with existing techniques [XWSY15, EBB23].

To guide the design of our interpolation algorithm, we analyzed
several rough 2D animations. Our main observation is that each
drawing necessarily uses a slightly different set of strokes, as it
would be extremely tedious for an artist to do otherwise. Even in the
case of static scenes, artists routinely introduce variations in strokes
to keep the animation alive, a technique called “faux-fixe” in the
field. We thus make the crucial design choice that each interpolated
drawing should be synthesized from scratch, in order to match the
look-and-feel of rough hand-made 2D animations.

Formally, we consider the strokes of a rough key drawing as a
vectorial texture that follows an underlying (but unspecified) con-
tour. In contrast with methods that synthesize strokes patterns (e.g.,
[LGH13,MWLT13,TWZ22]), our approach does not attempt to re-
produce relationships among strokes (proximity, orientation, etc),
as strokes in key drawings may follow highly irregular distributions
and tend to significantly overlap. Instead, the goal of the interpola-
tion process is to generate a set of strokes for each intermediate
frame that (1) appropriately conveys the interpolated contour mo-
tion, (2) interpolates the stroke distributions of the key drawings,
and (3) introduces a minimum amount of temporal artifacts. One
possible solution for such a problem would be to rely on example-
based raster synthesis (e.g., [JST∗19,TFK∗20,FKL∗21]). However,
as discussed in Section 5.1 and shown in Figure 11, ignoring the
vectorial nature of strokes does not preserve stroke consistency,
which leads to severe visual artifacts in the resulting animations.

We instead rely on vector strokes since stroke consistency is
preserved by construction, and fine control is granted especially
when interpolating key drawings with different styles and stroke at-
tributes. In particular, this allows us to make sure that every frame
is synthesized as if it had been drawn by hand, with each stroke
drawn independently on the canvas. Our method works in two main
steps (see Figure 2). In pre-process, we generate for each key draw-
ing many candidate strokes via transformations of the input drawn
strokes. At runtime, we select subsets of these candidate strokes
to synthesize intermediate frames, carefully monitoring potential
visual artifacts to reduce their occurrences. More specifically, we
make the following three contributions:

• We introduce in Section 3 an interactive GPU-based stroke dis-
tribution synthesis framework for rough line drawings interpola-

tion. It preserves stroke consistency by construction and conveys
interpolated contours with a coherent style while reducing visual
artifacts. It is also easily art-directable, allowing artists to strike
different balances between visual goals through different stroke
selection strategies.

• We describe in Section 4 several error metrics tailored to our
stroke distribution synthesis framework of rough line anima-
tions. These metrics allow us to evaluate different stroke selec-
tion strategies in a more objective manner.

• We present in Section 6 a user study that evaluates the ef-
fectiveness of our stroke selection strategies, and compares
our results with the temporal noise reduction technique of
Noris et al. [NSC∗11].

2. Previous work

2.1. Inbetweening

Vector drawings. Inbetweening for clean line animations pro-
vided as vector inputs has been investigated for decades [BW75].
These methods usually proceed in two steps which correspond
to the two aforementioned problems: (1) they build correspon-
dences between strokes of consecutive keyframes either by con-
struction [DRvdP15] or semi-automatically [LCY∗11, YBS∗12,
ZLWH16, BBM∗16, CMV17, YSC∗18, MFXM21]; (2) they in-
terpolate each pair of matched strokes to generate intermediate
frames [Ree81, SGWM93, Kor02, LWZ∗04, WNS∗10, Yan18]. The
most recent method in this body of work [JSL22] additionally al-
lows the specification and control of occlusions. Even though these
methods work well for clean line drawings with some manual in-
terventions, they do not extend easily to rough animations, as each
keyframe may contain a very different number of strokes and vary-
ing spatial distributions.

To the best of our knowledge, only three previous vector anima-
tion techniques accept rough inputs. The drawing prediction system
of Xing et al. [XWSY15] detects similarities and establishes cor-
respondences between rough drawings to suggest future drawings
with temporal and spatial consistency. However, it does not gener-
ate novel rough inbetween frames interpolating two key drawings.

Closer to our work, the method of Noris et al. [NSC∗11] selects
a subset of the frames of a manually-drawn (and hence “noisy”)
rough animation, and then matches and interpolates those to gen-
erate a less noisy animation. More precisely, it first estimates the
global motion between each pair of selected drawings by perform-
ing As-Rigid-As-Possible (ARAP) registration [SDC09] between
their rasterized distance fields, hence abstracting their topological
differences. Then, it matches each stroke of the first drawing, de-
formed by the ARAP transformation, with the most similar stroke
in the second one, and vice versa, potentially duplicating strokes.
The intermediate frames are eventually generated with the stroke
interpolation technique of Whited et al. [WNS∗10]. This results in
noise-free but overly smooth stroke trajectories that break the orig-
inal hand-made appearance. To reintroduce a controllable amount
of noise, these steps are repeated between the noise-free and origi-
nal drawings, the stroke interpolation factor effectively modulating
the noise level. In this work, we take the opposite approach: we
start from a sparse set of rough drawings instead of a full rough
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input animation, and we interpolate groups of strokes instead of in-
dividual strokes to avoid creating unnatural motion trajectories. We
compare the merits and results of both approaches in Section 5.2.

The rough animation system of Even et al. [EBB23] proposes
vectorial ARAP registration tools to directly match groups of
strokes embedded into lattices between key drawings. Those are
then deformed forward and backward in time using ARAP interpo-
lation [ACOL00] and cross-faded to generate intermediate frames.
This method additionally provides control over timing and conti-
nuity at keyframes, and enforces connectivity among different sets
of strokes through hierarchical constraints. We follow the same ap-
proach to match and deform key drawings, but we want to replace
the simple cross-fading that produces obvious ghosting artifacts.
The problem left to solve is thus how to synthesize intermediate
groups of strokes while keeping temporal noises under control.

Raster drawings. When processing raster drawings, the stroke
correspondence step becomes an image registration problem,
whereas the stroke interpolation step is turned into a morph-
ing (deformation and blending) problem. The method of Baxter
et al. [BBA09] registers the outer boundary of 2D shapes enclosing
the drawings and uses uniform alpha-blending to mix the interme-
diate warped images, which leads to ghosting artifacts especially
noticeable for rough line drawings. Zhu et al. [ZPBK17] extend this
kind of approach to handle extreme shape deformations and topo-
logical changes, but their method involves an expensive numerical
optimization that prevents its use in an interactive system.

Focusing on cartoon animations, learning-based techniques
[LZLS21,SZY∗21,CZ22] manage to inbetween colored keyframes
with complex content. To register a pair of key images, they
first estimate dense motion flows between them (e.g., [SLL∗22]).
They then generate an intermediate image by warping and non-
linearly blending the input key frames (e.g., [HZH∗22]), which
produces ghosting artifacts similar to other raster methods. In ad-
dition, these methods were not trained on rough drawings, and
would thus require a large training database that must encom-
pass different drawing styles. In contrast, example-based styliza-
tion approaches [TFK∗20, FKL∗21] can transfer arbitrary styles to
a video sequence with only a few stylized exemplars. Neverthe-
less, as shown in our experiments (Section 5.1), when applied to
rough drawings, their results look more like “advected” textures
than hand-drawn animations.

Closer to our input styles, the method of Arora et al. [ADN∗17]
interpolates concept sketches using a multi-image dense matching
algorithm tailored to line drawings, and a non-linear alpha-blending
scheme based on the confidence of the matching. Even though non-
linear blending successfully reduces ghosting artifacts, it cannot
reproduce the distinctive appearance of rough animations where
stroke distribution varies from frame to frame.

2.2. Strokes distribution synthesis

Raster texture synthesis. Since a rough drawing can be seen
as a distribution of strokes, it is tempting to represent it as a
texture. Non-parametric raster texture synthesis [WLKT09] has
been extensively used to transfer the style of an exemplar to im-
ages [HJO∗01,FJL∗16,SJT∗19] and animations [BCK∗13,FLJ∗14,

DLKS18, JST∗19]. Yet, rough drawings have a very specific style
which requires preserving the spatial continuity of strokes. This
constraint turns out to be overly challenging for those methods, as
demonstrated by our experiments (Section 5.1).

Vector pattern synthesis. To ensure the integrity of the strokes
or of more general vector elements, example-based pattern syn-
thesis approaches directly distribute discrete elements to meet
some distribution constraints [BBT∗06,IMIM08,HLT∗09,LGH13,
MWT11, MWLT13, TWZ22], potentially combined with contin-
uous structures [RÖM∗15, TWY∗20]. Alternatively, procedural
techniques [GAM∗21, RSP22] can achieve similar patterns by
grammars or procedures. However, both families of approaches
only support repetitive patterns, at best with branching or graph-
like structures. Consequently, they are not appropriate for repre-
senting stroke distributions with a large amount of overlap between
strokes, large spatial variations and a strong underlying structure
dictated by the depicted contours. In addition, only the work of
Ma et al. [MWLT13] considers temporal variations but solely with
repetitive movements.

The specific problem of rough drawing inbetweening does not
necessitate to take into account precise stroke-to-stroke relation-
ships such as proximity or orientation, as done in stroke pattern
synthesis techniques. To the contrary, maintaining precise stroke
patterns through interpolation would put too much emphasis on the
motion of strokes themselves, whereas our goal is to communicate
the motion of the underlying contour. In this work, our objective is
instead to synthesize drawings that interpolate ensemble properties
of stroke distributions: their spatial density (i.e., how many strokes
overlap along the depicted contour) and their total stroke length. In
addition, we provide a simple way to interpolate stroke attributes
(e.g., thickness) in case they vary along a contour.

Stroke synthesis. A large body of work aims at synthesizing in-
dividual strokes in a given style taken from a single [HOCS02,
KMM∗02, LA15] or a set of exemplars [FTP03, LYFD12]. These
methods reproduce complex drawing styles (e.g., curls), but they
do not capture distributions of strokes. Relying on a large database
of hand-made portrait sketches (about 8000 strokes per artist),
Berger et al. [BSM∗13] synthesizes new drawing of faces from
photographs, capturing three stroke distribution properties: their
amount of overlapping, their length and their type (i.e., simple or
complex strokes). Ben-Zvi et al. [BBM∗16] extends this approach
to videos with temporal coherence. Similarly to those two methods,
we generate sketches in a given drawing style, but we cannot rely
on an external library of drawings since the inbetween frames that
we synthesize must be drawn in the specific style used to depict the
enclosing key drawings.

3. Rough inbetweening

Figure 2 shows an overview of our interpolation framework for
rough line drawings, with notations summarized in Table 1. We
assume that groups of strokes in key drawings have been registered
beforehand (we use lattice-based ARAP deformation [SDC09,
EBB23]), such that they can be warped in alignment.

In pre-process, a large amount of candidate strokes is generated
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Figure 2: Overview of our stroke distribution synthesis method. In pre-process (left), we generate a large number of candidate strokes for
each input key drawing. Then, at runtime (right), key strokes are warped in alignment to generate an interpolated density map (top), which
is used as a target density for the selection of relevant candidate strokes. All candidate strokes are warped in alignment, then progressively
added until density criteria are met (bottom). Temporal strategies provide control over temporal artifacts by directly including (in red) some
strokes and excluding (not shown) others.

for each keyframe separately using linear perturbations with ran-
dom parameters (Section 3.1). The rationale is that pre-generating
strokes makes the synthesis process a mere question of selecting
the most adequate candidates at each frame, which is fast enough
to run interactively.

At runtime, we must first estimate the target stroke density at the
current frame. This is done by warping key strokes (i.e., strokes
in both keyframes, as shown at the top of Figure 2) with ARAP

Sk set of strokes from the kth key drawing
S′k set of candidate strokes from the kth key drawing
Ŝk set of selected candidate strokes from the kth key drawing

Dk density map of the kth key drawing
D⋆ target density map
DS density map of a single stroke S
C(S) covered density for a single stroke S
L(S) total length of all stokes in S
L⋆ target total stroke length
L⋆

1/2 target stroke length ratio

∆d minimum frame interval before a stroke may disappear
∆a minimum frame interval during which a stroke must remain
β amount of stroke perturbation

Table 1: Main notations, from top to bottom: stroke sets, density
maps, covered density, stroke lengths, and temporal parameters.

interpolation [ACOL00]. We then compute their blended density
map on the GPU (Section 3.2). We also compute attribute maps
(not shown) such as stroke thickness (i.e., their width) at this stage.

Candidate strokes must then be selected according to the tar-
get density map. We first warp all candidate strokes from both key
drawings, then add them progressively to the synthesized drawing
until the target density is met (Section 3.3). This process can also be
customized using temporal strategies, which select candidates that
should be directly included, excluded, or considered for synthesis
according to previously synthesized frames (Section 3.4).

3.1. Candidate strokes generation

Our stroke distribution synthesis algorithm relies on the availability
of two sets of candidate strokes, one per key drawing to interpolate.
Even though the generation of these candidate strokes is performed
in pre-process, we provide an efficient solution so that new can-
didate strokes can be quickly re-generated when either of the key
drawings is modified. As shown in Figure 3, candidate strokes are
generated in three steps: (a) linear perturbations, (b) stroke sliding,
and (c) density-based filtering.

Linear perturbations. Let us write S ∈ S a stroke from a key
drawing (also called key stroke in the following). It is defined by
a sequence of 2D points xi, ∀i ∈ {1, . . . , |S|}, where |S| stands for
the number of points in S. A candidate stroke S′ is generated by
copying S to S′ while applying small linear perturbations to its po-

© 2023 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.



Chen et al. / Efficient Interpolation of Rough Line Drawings 5 of 16

(a) linear
perturbations

(c) density-based
filtering

(b) stroke
sliding

Figure 3: Generation of candidate strokes. For each input key
stroke (top left), (a) N candidate strokes are first generated by lin-
ear perturbations around the stroke median point, and then (b) slide
along their own length with an orientation adaption to produce
larger perturbations. Finally, (c) candidate strokes that do not suf-
ficiently cover the density map of the corresponding key stroke (in-
set) are filtered out.

sitions (see Figure 3(a)):

x′i = (I+L) · (xi−xm)+xm (1)

where xm is the median point of S (i.e., m = |S|/2), I is the iden-
tity matrix, and L is a matrix of random linear perturbations in the
[−0.1,0.1] range. We use small perturbations around the median
point xm since each candidate stroke S′ is further perturbed in the
next step. We write N the total number of candidate strokes initially
generated with linear perturbations (we use N = 20).

Stroke sliding. Each candidate stroke S′ ∈ S′ is then subjected to
a new perturbation process, whereby it is made to slide along its
own path. This is done by picking a random point x′j ∈ S′, and
translating/rotating the whole stroke so that its center of gravity
after sliding x′m is x′j and its tangent t(x′m) at that point is aligned
with the tangent t(x′j).Formally, for all x′i ∈ S′, we compute:

x′i ← Rm )j(x′i−x′m)+x′j (2)

where Rm )j denotes the rotation that aligns t(x′m) with t(x′j). In
practice, we restrict the randomly picked point x′j to points whose
arc-length distance to x′m is less than a quarter of the stroke length,
hence preventing the candidate stroke from overly deviating from
the original stroke. We end up with a new set of N candidate strokes
that are much more spread apart (see Figure 3(b)).

Density-based filtering. The last step ensures that the generated
candidate strokes do not lie too far away from their original key
stroke, and thus have sufficient chances to be selected during syn-
thesis. This is done by computing a density map DS for the cor-
responding key stroke S (as explained in the next section), and en-
forcing that a minimum proportion of stroke points (95% in our im-
plementation) overlaps a non-zero region of the density map (see
Figure 3(c)). We add to this set of filtered candidate strokes the
original key stroke, which is necessary to produce coherent inter-
polations of key drawings, as explained in Section 3.3. We found
empirically that near-circle strokes need more perturbations to yield
valid candidate strokes, which are mostly offset versions of the key

(a) Input strokes (b) Density map (c) Thickness map

Figure 4: Generation of density and thickness maps. The density
map (b) is computed by a Gaussian convolution of the input stroke
paths (a). Stroke thickness is then rendered to a raster buffer, which
is normalized by the density map to obtain the thickness map (c).

stroke, as rotation tends to make candidate strokes filtered out by
the density map.

3.2. Density and attribute interpolation

Before synthesizing a new drawing between a pair of keyframes,
we must establish a target stroke density that will be achieved
through synthesis. Such a density map is also used in pre-process
for each individual key stroke to filter out generated candidate
strokes that have little chance to be selected for synthesis.

All strokes of a key drawing are first warped to the current
frame. Drawing inspiration from the painterly rendering technique
of Lu et al. [LSF10], they are then rendered with additive blending
on the canvas. To spatially average and spread their contribution,
they are eventually convolved with a Gaussian kernel to yield a
density map, as shown in Figure 4(b). One might think that such a
convolution could be done in a pre-process for each key drawing;
unfortunately, warping a stroke density map is not equivalent to
computing a density map from warped strokes (except when warp-
ing boils down to a rigid transformation). The two resulting density
maps D1(t) and D2(t) – one for each key drawing – are finally
linearly interpolated according to the current interpolation time t
to yield the target density map D⋆ = (1− t)D1(t) + tD2(t) (see
Figure 2). The same process is used to build attribute (e.g., thick-
ness) maps. The only difference is that attributes are normalized
by density after convolution to store averaged attribute values (see
Figure 4(c)).

GPU implementation. In practice, density and attribute maps are
simultaneously built on the GPU for efficiency, since they must be
recomputed at each frame. The Gaussian convolution is approx-
imated by a stamping process to allow fast density updates that
are required by our synthesis algorithm (Section 3.3). The warped
strokes are first resampled uniformly along their arc length (with a
2.5 pixels step size in our implementation) and stored in a Vertex
Buffer Object along with their stroke indices; a Gaussian footprint
texture is then rendered at each point location in parallel with addi-
tive blending. We use a Gaussian with a standard deviation that is
3/4 of the ARAP lattice cell size ℓ (ℓ= 32 pixels by default), and a
low image resolution for the density or attribute maps to speed up
GPU read-back.
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D⋆D1 D2

Figure 5: Local density issue. The interpolated target density D⋆

may be spread out when the key strokes and thus their correspond-
ing densitiesD1 andD2 are not properly aligned. Without a global
density criterion, a naive algorithm will tend to synthesize too many
strokes to cover D⋆.

3.3. Stroke distribution synthesis

Equipped with a target density map D⋆, the synthesis algorithm
consists in selecting a subset of warped candidate strokes coming
from two key drawings. We denote the two sets of warped candidate
strokes S′1 and S′2. Since we target interactivity, a global optimiza-
tion is not an option; we instead devise a fast greedy algorithm.

In its most naive version, this algorithm would randomly pick a
stroke S′ from either S′1 or S′2, check whether it sufficiently covers
D⋆; if so, update D⋆ by subtracting the density covered by S′, re-
move it from its set, and repeat this process until there is no remain-
ing candidate stroke that can improve density coverage. This naive
algorithm would give equal chances to all candidates which is not
desirable for two reasons: (1) strokes with small density coverage
could be inserted early on, preventing the selection of strokes with
larger density coverage, sometimes even hampering convergence;
(2) many strokes would be rejected before the density coverage cri-
terion is met, which would be inefficient. To improve on both as-
pects, candidate strokes are sorted according to their covered den-
sity C(S′), and the candidate stroke with the highest covered density
in S′1 ∪S′2 is always selected. After each stroke selection, the tar-
get density map D⋆ should be updated, the covered densities of all
remaining candidate strokes must be recomputed, and the strokes
re-ordered. Formally, the density C(S′) covered by a stroke S′ is
the integral of the target density in the stroke footprint. Repeatedly
evaluating this integral would be prohibitively expensive. However,
since the size of this footprint is constant, C(S′) is correlated to
the density covered by the stroke vertices, and we can thus use the
following crude, but very fast, approximation: C(S′) ≈ ∑iD⋆(x′i),
which proved to be sufficient for stroke sorting. We accelerate this
computation further by leveraging GPU parallelism (see below).

The second issue of the naive algorithm is its termination cri-
terion: only relying on local density coverage might end up syn-
thesizing too many strokes at intermediate frames. This can be il-
lustrated with a simple example (see Figure 5). When strokes in
key drawings are slightly offset (which is commonplace in rough
drawings), the interpolated target density map D⋆ at an interme-
diate frame covers a larger amount of space than D1 or D2, albeit
with a reduced magnitude. As a result, the naive algorithm will tend
to synthesize twice the number of strokes. To solve this issue, we
need to consider a global density criterion: we must ensure that the
total density of synthesized strokes is close to the total density in
the initial target density map D⋆. Denoting I[D] =

∫
D(x)dx the

integrated density, we need to enforce the following constraint:

∑
Ŝ∈Ŝ

I[DŜ]≈ I[D⋆], (3)

where Ŝ denotes the set of synthesized strokes andDŜ is the density
map for a single synthesized stroke Ŝ. Unfortunately, such a pixel-
wise comparison would be too time-consuming in practice. Since
the density map of a stroke DŜ is correlated with its length, we
approximate that constraint by L(Ŝ)≈ (1− t)L(S1)+ tL(S2) = L⋆,
where L(S) denotes the total length of strokes in S.

A final additional criterion is that inbetweening should produce
the smoothest possible transition between the two keyframes. Intu-
itively, it implies that more strokes from S′1 (resp. S′2) should be se-
lected in the temporal vicinity of the first (resp. second) keyframe.
In between, the proportion of selected strokes should progressively
change from one keyframe to the next. This would be sufficient if
the two key drawings had similar densities, but this is not the case
in general (i.e., D1 ̸=D2). At interpolation time t ∈ [0,1], we must
thus enforce a target density ratio:

∑Ŝ1∈Ŝ1
I[DŜ1

]

∑Ŝ2∈Ŝ2
I[DŜ2

]
≈ (1− t) I[D1]

t I[D2]
, (4)

where Ŝ1 (resp. Ŝ2) is the set of synthesized strokes coming from
the first (resp. second) key drawing. As before, we rely on an
approximation based on total length for efficiency reasons. At time

t, we thus instead target L(Ŝ1)

L(Ŝ2)
≈ (1−t)L(S1)

tL(S2)
= L⋆

1/2.

Algorithm 1 recaps our stroke synthesis procedure. It takes as
input the two sets of warped candidate strokes S′1 and S′2, the target
density D⋆, the target total length L⋆ and the target length ratio
L⋆

1/2 which implicitly depends on the interpolation time t. It outputs

a set of synthesized strokes Ŝ, which is also given as input to the
algorithm for the next intermediate frame. As of now, we input Ŝ =
∅, but we will see in Section 3.4 that different initial choices for S′1,
S′2 and Ŝ grant temporal control over the synthesis process. Note
that the covered density C(S′) for all warped candidate strokes S′

must be recomputed at the beginning of every step (line 3), since the
latest addition of a selected stroke always affects the target density
D⋆ (line 10). The two tests at lines 5 and 7 are fail-safes: they fail
only when we run out of candidate strokes with sufficient density
coverage, which terminates the algorithm since S′ = ∅. However,
in practice, in all of our experiments, our approach never runs out
of valid candidate strokes and thus never fails those tests.

The resulting synthesized strokes may be drawn as is (see Fig-
ure 6), or with attribute variations, typically thickness (see Fig-
ure 8). In the latter case, attribute values for each stroke point are
simply fetched in screen space from interpolated attribute maps.

GPU implementation. To update the target density (line 10), we
simply render the new selected stroke Ŝ with subtracting blend-
ing into D⋆ using the stamping process described in Section 3.2.
We then recompute the covered density for all candidate strokes
in parallel on the GPU. Each point in the previously defined Ver-
tex Buffer Object reads its corresponding density value in D⋆ and
writes it with additive blending into a 1D array indexed by stroke
indices, hence paralleling the sum at line 3 over the points of all
strokes in {S′1∪S′2}. To fetch this array more easily from the GPU
memory, it is stored into a 2D texture with the same dimensions as
the density map. The stroke index i is just remapped to the 2D co-
ordinates (i/h, i%h), where h is the height of the density map. We
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Algorithm 1: stroke distribution synthesis algorithm.

Input: S′1, S′2, D⋆, L⋆
1/2, L⋆, Ŝ

Output: Ŝ
1 begin
2 repeat

▷ Compute covered density for all candidate strokes
3 C(S′) = ∑iD⋆(x′i), ∀S′ ∈ {S′1∪S′2}

▷ Select a set of candidates w.r.t. the target length ratio

4 S′← L(Ŝ1)≤ L⋆
1/2L(Ŝ2) ? S′1 : S′2

5 if S′ ̸= ∅ then
▷ Select the candidate stroke with maximum coverage

6 Ŝ← argmaxS′∈S′ C(S′)
7 if C(Ŝ)> 0 then
8 Ŝ ← Ŝ ∪ Ŝ ▷ Add it to the output set

9 S′←S′ \ Ŝ ▷ Remove it from the candidate set
10 D⋆←D⋆−DŜ ▷ Update the target density

11 else
12 S′←∅ ▷ Stop if no valid candidate is available

13 until L(Ŝ)≥ L⋆ or S′ = ∅

only need to read back the first |S′
1∪S′

2|
h + 1 rows of this texture to

CPU memory to update all candidate strokes covered density.

The cost of those repeated memory transfers can be too pro-
hibitive for certain applications. We describe in Appendix A a more
complex version of this algorithm that selects a batch of candidate
strokes without updating the target and covered densities.

Synthesis results. Figure 6 shows the result of this stroke distribu-
tion synthesis algorithm at a single intermediate frame for a variety
of sketchy looks, using long or short strokes, with large or small
overlaps, aligned or not to the contour. Our method starts to show
its limits when the drawing style includes gaps (last row). This is
due to the linear interpolation of key density maps, which fills in
gaps when they do not occur at the same locations. A solution might
be to use a more sophisticated interpolation technique (e.g., mass
transport) on densities for such specific drawing styles.

Our approach also handles changes of drawing style from one
keyframe to the next, as shown in Figure 7. This is made possible by
the target length ratio L⋆

1/2 which properly balances selected strokes
coming from the key drawings. Since our method only synthesizes
distributions of strokes, the style of individual strokes is not itself
interpolated. Whether this should be done is a matter of artistic
choice. We leave that specific option to future work, as it raises
additional technical challenges, especially in an interactive setting.

Stroke attributes such as thickness may also be varied between
key drawings, either globally or locally. Our approach produces ad-
equate interpolation results in both cases, as shown in Figure 8.

The supplemental videos show the full interpolated sequences
for those results. Although the style is well preserved throughout
the sequence, temporal artifacts are substantial, often excessive to
properly depict the motion of the underlying contour. In the next

section we analyse the reasons of those temporal artifacts and ex-
tend the synthesis algorithm with strategies to control them.

3.4. Temporal strategies

The stroke distribution synthesis algorithm described in the previ-
ous section works independently at each frame. Therefore, some
candidate strokes that are selected at the current frame may not
have been selected at the previous frame and/or may disappear at
the next frame, yielding temporal artifacts. At the same time, select-
ing the same candidate stroke for all inbetweened frames might not
be desired either, since it will attract attention towards the motion
of the stroke instead of the motion of the depicted contour. Indeed,
as previously mentioned, we consider strokes as part of a vectorial
texture that represents an underlying contour, and the goal of the
synthesis process is to generate new, but similar, vectorial textures
while reducing temporal artifacts as much as possible.

One solution would be to apply the method of
Noris et al. [NSC∗11] to reduce the amount of temporal arti-
facts, which they call “noise”. Unfortunately, the method has
two main drawbacks: (1) it is far too computationally demanding
to yield interactive feedback, and (2) reducing noise has the
drawback of attracting attention toward individual stroke motion as
discussed in Section 5.2. We propose an alternative approach based
on temporal strategies whose objective is to find a compromise
between different sources of artifacts: flickering, popping and
residual motion.

Flickering. When a candidate stroke is not selected at the current
frame but is selected in previous and next frames, this leads to a
flickering artifact. A solution to this problem is to forbid a disap-
pearing stroke S′ to reappear in the next ∆d frames. This is simply
done by removing S′ from its set S′1 or S′2 prior to stroke distribu-
tion synthesis.

Popping. When a candidate stroke appears or disappears at a given
frame, it will inevitably create a popping artifact. As previously
mentioned, such artifacts cannot be avoided, but they can be re-
duced; in particular, they can be spaced apart in time as much as
possible. Our solution is thus to enforce the selection of an appear-
ing stroke S′ in the next ∆a subsequent frames, so that two appear-
ing/disappearing popping artifacts do not occur too close in time.
This is done by adding S′ to the initial set of selected strokes Ŝ prior
to stroke distribution synthesis and updating the target density D⋆

accordingly. To avoid synchronized stroke appearance every ∆a, we
assign an initial lifetime randomly chosen in the [0,∆a) range to the
strokes of the first synthesized frame.

Residual motion. Selecting the same candidate stroke S′ for sev-
eral frames has an inherent drawback though: the motion of S′ will
be smooth throughout that time interval, attracting attention to its
own motion instead of the motion of the underlying contour, which
we call a residual motion. When this happens, the stroke appears
to “slide”, which yields a subjectively less natural look and feel.
Residual motion increases with larger ∆a, but smaller ∆a yield more
popping artifacts. A work-around consists in slightly perturbing the
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t = 0

t = 0.5

t = 1

Figure 6: Style variations. Our interpolation results (middle row, framed) reproduce the styles of keyframes (top and bottom rows). We use
the same key shapes (i.e., with identity transformations) to focus on style reproduction.

t = 0 t = 1/3

t = 2/3

t = 1

Figure 7: Interpolation across different styles. Starting from a same input style for the first keyframe (left-most drawing), we interpolate
with keyframes drawn in different styles (bottom row). Our results (top and middle rows, framed) interpolate stroke distributions in a way
that transitions between styles.

strokes selected by the temporal strategies in Ŝ prior to stroke dis-
tribution synthesis using linear perturbation (see Section 3.1), with
a user-controlled parameter β.

A temporal strategy in our approach then consists in a triplet
{∆d ,∆a,β}, where the {0,0,0} strategy selects candidate strokes
at each frame independently without perturbation (i.e., no temporal
control). The next section introduces error metrics to help decide
which strategy is most adapted.

4. Error metrics

How should one choose among different temporal strategies? There
is no ideal solution since the (potentially subtle) look-and-feel pro-

duced by different strategies might appeal differently to different
artists. Nevertheless, we present in this section error metrics tai-
lored to our approach that help make a relevant choice.

Each metric is computed locally in time around the current
frame. We define a pair of temporal incoherence metrics related
to flickering and popping artifacts in Section 4.1, a pair of motion
metrics to capture “sliding” artifacts and to ensure that the underly-
ing contour motion is depicted properly in Section 4.2, and finally
a total density metric that tracks integrated density in Section 4.3.
We evaluate our temporal strategies using these error metrics in
Section 4.4 on the example of Figure 2. Since some of these met-
rics require stroke-level correspondences between frames, we first
describe a simple stroke matching technique.
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for Computer Graphics and John Wiley & Sons Ltd.



Chen et al. / Efficient Interpolation of Rough Line Drawings 9 of 16

t = 0

t = 0.5

t = 1

Figure 8: Thickness variations. Key drawings (top and bottom
rows) with thickness variations are properly interpolated with our
approach (middle row, framed). From left to right, we show varia-
tions from thick to thin strokes; from thick at the bottom to thick at
the top; and from thick at left to thick at right with two different key
shapes. Key and interpolated thickness maps are shown as insets.

Stroke matching. The matching of strokes between consecutive
frames is simplified by our stroke distribution synthesis algorithm
since for each synthesized stroke we can identify the key stroke it
comes from. We thus make here the simplifying assumption that the
viewer will only be able to visually track strokes originating from
the same key stroke. Let Ŝt−∆t and Ŝt be two synthesized strokes
from two consecutive frames, which are generated from the same
key stroke S. The spatial distance between this pair of strokes is
defined by:

d(Ŝt−∆t , Ŝt) =
1
|S|

|S|

∑
i=1
||xi(t−∆t)−xi(t)|| (5)

where xi(t) (resp. xi(t−∆t)) is a point from Ŝt (resp. Ŝt−∆t ), and
|S|= |Ŝt |= |Ŝt−∆t | by construction. If only one {Ŝt−∆t , Ŝt} pair ex-
ists, then stroke matching is trivial. When several pairs are found,
we apply the following simple, brute-force matching algorithm:
among all possible pairs, we find the one with minimum spatial
distance (Equation 5) to establish a stroke matching; then we re-
move this pair and iterate until no further pair can be found. Note
that some synthesized strokes might be left unmatched, which is
taken into account in temporal incoherence metrics.

4.1. Temporal incoherence metrics

In our approach, a temporal artifact is always related to the appear-
ance or disappearance of a synthesized stroke. We distinguish two
types of temporal artifacts and organize strokes in two correspond-
ing sets: the flickering set, holding synthesized strokes that disap-
pear for a few frames then reappear; and the popping set, which
gathers all other appearing or disappearing synthesized strokes. We

provide formal definitions for these two sets below and derive sim-
ple metrics from them.

Flickering strokes. A synthesized stroke is considered to flicker
if it disappears and reappears within a sufficiently short distance in
both space and time. A flickering event is assumed to occur once
a stroke reappears; hence we need to look in the past to determine
when it last disappeared. In practice we consider strokes that have
disappeared a maximum of three frames in the past, hence we com-
pare all pairs of synthesized strokes Ŝt−k∆t and Ŝt coming from the
same key stroke, with k ∈ {2,3}. Ŝt is then added to the flickering
set Ŝ f (t) if d(Ŝt−k∆t , Ŝt) is below a fraction of it length (in practice
we use d(Ŝt−k∆t , Ŝt)< L(Ŝt)/5 pixels). In other words, Equation 5
is used to decide whether synthesized strokes in non-contiguous
frames are close enough to be considered flickering. The flickering
metric is then simply defined by:

E f (t) =
1

L(Ŝt)
∑

Ŝ∈Ŝ f (t)

|Ŝ|, (6)

where L(Ŝt) is the total length of synthesized strokes at time t.

Popping strokes. A stroke Ŝt is added to the popping set Sp(t) if
it appears or disappears at time t, but is not part of the flickering set
at any other frame. The popping metric is then defined similarly to
the flickering metric:

Ep(t) =
1

L(Ŝt)
∑

Ŝ∈Ŝp(t)

|Ŝ|. (7)

Note that increasing the allowable time gaps for the flickering
set (values taken by k) will increase its size and decrease the size
of the popping set.

4.2. Motion metrics

The synthesized animation should not attract attention toward the
motion of strokes themselves, but instead convey the motion of the
underlying contour. We design two metrics to verify to which extent
this is the case.

Smoothness of stroke motion. Strokes that neither appear nor dis-
appear and last for several frames may produce individual motions
that attract attention away from the motion of the depicted under-
lying contour: they may appear to “slide” autonomously. We thus
measure to which extent these strokes exhibit a smooth trajectory,
which makes the hypothesis that the smoothest motion yields more
significant sliding.

Let us first identify the set of strokes that exist on three consec-
utive frames (i.e., at times t−∆t, t and t +∆t) by Ŝs(t). Formally,
the stroke motion metric measures the discrete curvature of the tra-
jectory of stroke points at time t. This is done by computing the
deviation of a stroke from a linear trajectory (see Figure 9(a)):

Es(Ŝ) =
|Ŝ|

∑
i=1

(
1− 1

∆i(t)

∥∥∥∥xi(t)−
xi(t +∆t)+xi(t−∆t)

2

∥∥∥∥) , (8)

where ∆i(t) =
√

∥xi(t)−xi(t−∆t)∥2+∥xi(t)−xi(t+∆t)∥2

2 is used to remap
the discrete curvature to the [0,1] range.
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xi(t −∆t)

xi(t +∆t)
xi(t) xi(t)

xi(t-∆t) v(xi)

vi

(a) Smoothness of stroke motion (b) Motion incoherence

Figure 9: Illustration of our motion error metrics. (a) The smooth-
ness of stroke motion is computed per vertex xi as the magnitude of
the deviation (red vector) from a straight motion on 3 consecutive
frames. (b) The motion incoherence is computed as the magnitude
of the deviation (red vector) between the vertex velocity vector vi
and the expected motion vector v(xi).

The stroke motion metric is then defined as:

Es(t) =
1

L(Ŝt)
∑

Ŝ∈Ŝs(t)

Es(Ŝ). (9)

Motion incoherence. Lastly, we need to make sure that the mo-
tion conveyed by synthesized strokes is coherent with the motion
of the underlying contour. To this end, we introduce a motion in-
coherence metric that relies on matched strokes and compares their
motion vectors to the underlying motion computed with ARAP in-
terpolation. Formally, all strokes that have a matching stroke in the
previous frame are gathered in a set Ŝm, and we measure the devia-
tion of those stroke motion vectors from the reference motion flow,
as illustrated in Figure 9(b). However simply adding up the norm
of these deviations would overestimate the error since it would ig-
nore the local cancellation of those vectors. To take this effect into
account, we average the deviations in a local neighborhood (with
radius ℓ= 32 pixels by default):

Em(Ŝ) =
|Ŝ|

∑
i=1

∥∥∥∥∥v(xi)−
1

|Nℓ(xi)| ∑
j∈Nℓ(xi)

v j

∥∥∥∥∥ , (10)

where v(xi) denotes the reference motion flow, Nℓ(xi) is the set of
point indices such that ||xi−x j||< ℓ and v j = x j(t)−x j(t−∆t) is
the motion vector of the jth stroke point.

The motion incoherence metric is eventually defined by:

Em(t) =
1

L(Ŝt)
∑

Ŝ∈Ŝm(t)

Em(Ŝ). (11)

4.3. Total density metric

A linear interpolation between two drawings of different densities
D1 and D2 should result in interpolated drawings whose density is
a linear interpolation of D1 and D2 (i.e., D⋆ = (1− t)D1 + tD2).
However, we cannot directly compare the density of synthesized
strokes with D⋆, since a mere offset of strokes would result in an
arbitrarily large difference. Instead, we rely on a metric that com-
pares integrated densities I[D]:

Ed(t) =
|I[D⋆]−∑Ŝ∈Ŝt

I[DŜ]|
I[D⋆]

. (12)
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Strategies {0,0,0} {3,3,0} sync {3,3,0} {3,3,0.02} {3,3,0.05}

Figure 10: Evaluation of temporal strategies. We measure how
five strategies perform on the error metrics introduced in Section 4.
Curves in the left column show metric results as a function of time.
Violin plots in the right column offer temporal statistical metric
summaries per strategy. We do not show the density metric as it is
close to zero for all strategies.

Note that Ed ≈ 0 will occur if Equation 3 is met. Since we do not
directly use that equation in our algorithm but an approximation
based on total length, Ed is a good metric to estimate the accuracy
of our approximation.

4.4. Strategies evaluation

Now that we are equipped with several error metrics, we are ready
to evaluate the temporal strategies {∆a,∆d ,β} of Section 3.4. Be-
sides the {0,0,0} strategy, we consider a variety of alternatives in
supplemental material, all computed on the example of Figure 2.
The motion incoherence metric is normalized by the maximum er-
ror found across all frames and strategies. Even though all metrics
are normalized in the [0,1] range, their relative visual impact cannot
easily be predicted: each metric should thus be considered indepen-
dently when comparing temporal strategies.

We compare a subset of strategies in details in Figure 10. The
flickering metric (first row) clearly shows that the {0,0,0} strat-
egy is unacceptable compared to the other ones. If we instead use
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(a) EbSynth [JST∗19] (b) StyleVid [TFK∗20]

(c) STAPL [FKL∗21] (d) Our approach

Figure 11: Comparison with example-based raster synthesis. Nei-
ther patch-based texture synthesis methods (a) nor learning-based
methods (b-c) preserve stroke consistency, whereas our approach
(d) does so by construction as it synthesizes vector strokes.

∆a = ∆d = 3 frames, flickering is strongly reduced. The importance
of desynchronizing those parameters in the first synthesized frame
is demonstrated by the popping metric (second row): the synchro-
nized strategy {3,3,0} sync (in olive) produces groups of strokes
that appear and disappear together, as seen in the supplemental
video. Moreover, they tend to exhibit smooth motion inbetween
those frames (third row), which results in sliding artifacts. The ef-
fect of the perturbation parameter β is to break the smoothness of
stroke motion, at the expense of slightly increasing motion inco-
herence (last row). As discussed in the supplemental document, we
have found that choosing β in the [0.02,0.05] range offers the best
trade-off in practice. We do not show results for the density metric
as it is close to zero for all strategies (∀t, Ed(t) < 0.0464), which
confirms the accuracy of our total length approximation. However,
we use it to compare to the method of Noris et al. [NSC∗11] in
Section 5.2.

5. Results

In this section, we expose the benefits of our approach over ex-
isting approaches (Sections 5.1 and 5.2), before demonstrating its
capabilities on complex animations (Section 5.3) and discussing its
performance (Section 5.4).

5.1. Comparison with raster-based approaches

Figure 11 compares our method with three state-of-the-art
example-based stylization approaches: EbSynth [JST∗19], Style-
Vid [TFK∗20] and STAPL [FKL∗21]. Instead of synthesizing
strokes, they generate raster images: EbSynth synthesizes bitmap
texture patches that are extracted from key drawings, whereas the
latter two methods use an image translation network trained with

0.0

0.3

0.6

0.9

Strategies {3,3,0.02}
Noris et al.
noise-free

Noris et al.
50% noise

Figure 12: Comparison with noise reduction [NSC∗11]. The to-
tal density metric shows that stroke density is not preserved by
the noise reduction technique, which is confirmed by visual inspec-
tion at an intermediate frame (insets). Creating the noise-free ver-
sion from the sequence synthesized with our {0,0,0} strategy takes
about 15ms per frame, but an additional 25ms per frame is required
to generate any intermediate noise levels (here 50%).

a few pairs of source / stylized images. With EbSynth, individual
strokes are implicitly broken during patch extraction, and cannot be
re-assembled during texture synthesis. In addition, it tends to cre-
ate ghosting artifacts. StyleVid and STAPL slightly better preserve
stroke consistency, but the results look more like shape morphing
than hand-drawn animations, as is clearly visible in the accompa-
nying videos. We conclude that current raster-based approaches are
not adapted to the interpolation of rough line drawings.

5.2. Comparison with noise reduction

The method of Noris et al. [NSC∗11] is originally intended to con-
trol noise given a hand-drawn rough line animation as input. For the
purpose of comparison, we instead apply it on a set of interpolated
drawings obtained using our approach with the {0,0,0} strategy,
with the intent to compare it to our temporal strategies. In their ap-
proach a noise-free interpolation is first computed, then matched to
the noisy input using ARAP registration and stroke-to-stroke Haus-
dorff distance such that a result with intermediate noise reduction
may be produced.

Our implementation relies only on the Hausdorff distance for
matching (no ARAP registration), which makes the method way
more efficient. Nevertheless, it is still approximately 2 times slower
than our solution. More importantly, as shown in Figure 12, stroke
density is not well preserved by either of their results as shown by
our total density metric. This was expected since in their method,
strokes are initially duplicated to generate the noise-free version of
the animation. Our solution matches density closely, which vali-
dates our choice of approximation based on total stroke length.

Our other metrics are tailored to our stroke distribution synthesis
algorithm, and are thus not easily adaptable to the method of Noris
et al. One exception is the smoothness of stroke motion, which may
be trivially computed on the noise-free result. As shown in supple-
mental material, this reveals the presence of many sliding artifacts,
which is to be expected since the noise-free version exhibits no
popping nor flickering by construction. A subjective comparison is
provided through the user study of Section 6.
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Figure 13: Multi-layer animations. For complex animations, we
transform and interpolate each drawing part separately in a differ-
ent layer. In this walk cycle, the left-most and right-most drawings
show the transformation lattices assigned to each part, depicted
with a specific color. We show our interpolation results with the
same colors. Here we use the {3,3,0.05} strategy.

Figure 14: Complex animation with thickness variations. As in
Figure 13, we use several layers to animate this leopard (keyframes
in gray, interpolation in black). In addition, we decrease stroke
thickness based on motion speed. Our solution properly interpo-
lates such stroke attributes. Here we use the {3,3,0.02} strategy.

5.3. Complex results

As shown in Figure 1, our method handles animations composed
of multiple key-frames. For simplicity and efficiency, each pair of
consecutive keyframes is processed independently, implying that
the selection strategy is reset at each keyframe. For such complex
animations, we use multiple layers, one for each part of the ani-
mated shape. As shown in Figure 13, each layer is controlled by
its own ARAP lattice and interpolated independently, even though
hierarchical constraints between layers [EBB23] could be added.
We use a lattice size of ℓ = 32 pixels by default, but it may be ad-
justed according to the size of the layer. Stroke thickness may be
varied throughout keyframes, as seen in Figure 14 where we de-
crease thickness with motion speed.

5.4. Performances

Our prototype implementation achieves interactive performance
even on modest configurations (e.g., laptops) thanks to both GPU
acceleration and the use of stroke batches for synthesis (see Ap-
pendix). A timing breakdown is provided in Table 2 for the exam-
ple of Figure 2: its key drawings have 70 and 48 key strokes re-
spectively, and 1048 candidate strokes are generated in pre-process
in about 1.5s. We indicate the mean computation time per frame,
averaged over 46 intermediate frames, which are then cached for

CPU GPU GPU-batch
# candidate strokes 1048 1048 1048 4330
Sk(t) : warping & resampling (CPU) 5.4 5.4 5.4 20.8
D⋆(t) : target density interpolation 25 2.1 2.1 9.3
D(S) : stroke densities computation 4.3 10.4 2.2 4.1
Ŝ : strokes sorting (CPU) 5.7 5.7 1.7 1.6
D⋆ : density map update 997.4 6 2 2.9
other CPU computation 2.2 3.1 1.2 30.9
Total (per frame) 1040 32.7 14.6 69.6

Table 2: Performance breakdown. Timings per frame (in millisec-
onds) for each implementation, detailed for the most computation-
ally expensive steps of our method. Candidate strokes are gener-
ated beforehand during a separate CPU pre-process in about 1.5s
(resp. 2.5s) for 1048 (resp. 4330) strokes. Performance averaged
over the 46 frames of the example in Figure 2, measured on a Intel
I5 7300HQ CPU and a NVidia GeForce GTX1050Ti Mobile GPU.

playback. The GPU-batch implementation is required for interac-
tive feedback in this case, with most of the time spent in the com-
putation of stroke densities through splatting. In comparison, the
CPU implementation is much longer, with most of the time spent
in the update of the density map. The last column of Table 2 pro-
vides timings for the GPU-batch algorithm on the same animation
but with key drawings having 215 and 218 key strokes respectively,
leading to 4330 candidates strokes. Timings scale reasonably well
with the number of candidate strokes, most of the overhead being
due to under-optimized CPU parts of the code.

6. User Study

To validate the effectiveness of our selection strategies and com-
pare it with noise reduction [NSC∗11], we conducted a user study
involving 38 undergraduate art students that followed at least one
course on animation. The code to run the study was developed us-
ing PsychoPy2 [PGS∗19], and is provided with the stimuli in the
supplemental materials.

6.1. Experiment

The user study is a force-choice experiment asking the participants
to choose which one of two animations looks more hand-drawn
(A/B testing).

Stimuli. The stimuli are two-second animations generated from
five sets of keyframes with similar drawing styles but various de-
grees of complexity (e.g., abstract shape vs. character, planar defor-
mation vs. complex motion). We consider four methods to generate
the stimuli: our algorithm with the {0,0,0} strategy as the base-
line, the {3,3,0.02} and {3,3,0.05} strategies (cf. Section 4.4),
the noise-free (N100) and 50% noise level (N50) versions of Noris
et al. [NSC∗11] (cf. Section 5.2). We consider two values of β to
evaluate the compromise between motion incoherence and smooth-
ness of stroke motion.

Protocol. To anchor the hand-drawn look-and-feel, participants
are first presented with five rough animations that are not part of the
stimuli and were manually drawn by professional artists. Then, for
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Figure 15: Histogram of selection rates of the studied compar-
isons. Each bar corresponds to the selection rate of a given method
when compared to the baseline, ours with the {3,3,0.02} or the
{3,3,0.05} temporal strategy. 50% chance level is shown with a
red line. Selection rates non significantly different than chance level
are indicated by ‘n.s.’.

each trial, two animations generated by a different method starting
from the same input keyframes are played consecutively, and may
be played back as many times as needed. The participant is then
asked to choose which animation looks more hand-drawn in her
opinion. The first five trials are training examples to familiarize the
participants with the interface and animations. Those are generated
with the baseline {0,0,0} and simple cross-fading for the five sets
of keyframes. After this training phase, we compare {3,3,0.02},
{3,3,0.05}, N50 and N100 against the baseline {0,0,0}, as well as
our two strategies against N50 and N100, and against each other,
i.e., nine comparisons for the five sets of keyframes. Each com-
parison was presented twice in a different order, resulting in 90
randomized comparisons per participant.

6.2. Results

For all participants, we compute the selection rate of each of the
nine method comparisons by averaging the participant choices over
the two repetitions of the five animations. We present the average
selection rates obtained for each comparison in Figure 15. Details
of the statistical analysis and additional results are presented in the
supplemental materials.

As a reminder, if participants were not able to choose which
method looked more hand-drawn in a method comparison, the se-
lection rate should be close to the 50% chance level. For each com-
parison, we thus test if the selection rate was significantly different
than the chance level using either a one sample Student’s t-test or a
one sample Wilcoxon signed rank test if we cannot assume a normal
distribution of the participants’ selection rates [Con99]. Similarly,
we study which method performed better against the baseline and
against each other.

Effectiveness of our temporal strategies. Participants found that
animations generated with our two strategies looked more hand-
drawn than the {0,0,0} baseline. This validates our choice of re-
ducing flickering with ∆a = ∆d = 3. Moreover, they found that an-
imations generated with β = 0.05 looked more hand-drawn than
with β = 0.02, which helps select the best trade-off between break-
ing motion smoothness and increasing motion incoherence using
the perturbation parameter β.

Frame 1 (key) Frame 16 Frame 32 Frame 48 (key)

Figure 16: Stroke overlap. Our method can handle rather “clean”
key drawings (top), but if strokes insufficiently overlap with each
others, gaps may appear in the interpolated frames (bottom).

Comparison with noise reduction. As expected, the selection
rates of the noise-free method (N100) against the baseline and our
strategies were all found lower than the chance level by a large
margin, and N100 performed significantly worse than all other
methods against the baseline. Our two strategies performed signifi-
cantly better against the baseline than the 50% noise version (N50)
(65.0% and 64.7% vs. 52.1%), which indicates that they produce
animations that look more hand-drawn. Moreover, while partici-
pants could not choose which animation looked more hand-drawn
when comparing N50 directly to the baseline and to our {3,3,0.02}
strategy, the selection rate of N50 against our {3,3,0.05} strategy
was significantly lower than chance level. This further indicates that
β = 0.05 gives the best trade-off between motion smoothness and
incoherence in our tested strategies. The impact of density varia-
tions of N50 (see Figure 12) on these results remains unclear and
would require further user studies and analysis.

7. Discussion

We have presented an efficient stroke distribution synthesis tech-
nique that produces compelling interpolations of rough line
drawings and reduces temporal artifacts through several user-
controllable strategies. Comparisons with previous work have
demonstrated that a dedicated solution is required to properly in-
terpolate rough drawings, and we have shown how our approach
handles different types of styles, attributes, and motions, with in-
teractive feedback thanks to our GPU-accelerated implementation.
The error metrics we have introduced not only help choose a strat-
egy, but also permit the comparison with alternative approaches.
We performed a user study that confirms the superiority of our ap-
proach from a subjective standpoint.

Limitations. The most straightforward limitations of our approach
lie in the adequacy of the input key drawings. This appears in the
last column of Figure 6. In general, our approach expects a sketchy
drawing style that does not draw attention to individual strokes,
which is different from stroke pattern synthesis techniques, as al-
ready mentioned in Section 2. Figure 16 further shows how our
method behaves as the input key drawings get “cleaner”, i.e., with

© 2023 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.



14 of 16 Chen et al. / Efficient Interpolation of Rough Line Drawings

Frame 1 (key 1) Frame 24 Frame 48 (key 2) Registration

Figure 17: Failure case. When keyframes are not well registered,
as shown at right (blue/red strokes from key drawing 1/2), warped
candidate strokes will inevitably produce ghosting artifacts.

less overdraw and strokes closer to the underlying contour. With
too few overlaps between strokes, our method may produce gaps.
Another issue arises when the registration between key drawings
is not accurate enough, as shown in Figure 17. Our approach then
logically yields ghosting artifacts.

As noticeable in Figures 1, 13 and 14, our method does not
take visibility into account. This is not much of an issue in the
early stage of rough animations: in many of the example anima-
tions we analyzed, hidden parts are often explicitly drawn. How-
ever, when refining the animation, visibility handling will likely be-
come increasingly important. The major issue will then be to solve
the matching problem between partially occluded sets of strokes,
which to the best of our knowledge is still an open problem. Once
solved, our approach could easily be adapted by either providing a
different target distribution, by making use of masks that partially
hide synthesized strokes, or by a combination of both.

Our error metrics have proved useful to select the best parame-
ters for temporal strategies. However, aside from total density, they
are tailored to our stroke distribution synthesis algorithm. It would
be interesting to extend them to other stroke synthesis techniques.
Ultimately, additional user experiments will be required to evaluate
how well they correlate with human perception.

Future work. We have explored a number of temporal strategies.
However, once a strategy has been chosen, we rely on it for the
whole animation. It would be interesting to explore how strate-
gies could be adjusted to adapt to the motion speed and complexity
between two keyframes. Even though we only focused on the in-
terpolation problem in this work, we also relied on rather simple
correspondences between key drawings. One might wonder how
it might handle more complex cases where drawings become par-
tially hidden by others. Our approach could also be adapted to other
stroke-based styles, such as painterly rendering, or maybe even wa-
tercolor. An intriguing direction of future work is the extension of
our approach to 3D line drawings produced in VR environments.
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Appendix A: Batched stroke distribution synthesis algorithm

Thanks to our GPU-based implementation, each update of both the
density map and covered densities can be achieved in real time.
However, the numerous transfers from GPU to CPU memory are
still too expensive for most applications. To address this issue, we
propose an extended version of the synthesis algorithm described in
Section 3.3 that selects multiple candidate strokes in batches. This
way, the density map and covered densities are only updated and
read back from the GPU between batches.

Since we cannot rely on the density map to prevent aggregation
of strokes within a batch Ŝb, we need another distribution criterion
that should be (1) an approximation of the density already covered
by the strokes in Ŝb in the footprint of a new candidate stroke Ŝ,
and (2) very fast to evaluate. For this purpose, we approximate the
stroke footprint by their Axis-Aligned Bounding Box (AABB), and
we count how many times the AABB of Ŝ overlaps AABBs from
the strokes in Ŝb. The candidate stroke is only accepted if this num-
ber is lower than γ C(Ŝ), with γ∈ [0,1] a user parameter. In practice,
we use γ = 1/2 in all our results.

The batch size is dynamically determined as a fraction of the in-
terpolated total length L⋆. The total length of the selected strokes
in a batch L(Ŝb1)+L(Ŝb2) must be lower than ω L⋆, where the pa-
rameter ω ∈ (0,1] controls the batch maximum size. When ω→ 0,
the selection reverts to the non-batch strategy, which is slow. When
ω→ 1, many strokes are selected without updating the density map,
which can lead to visual artifacts. Empirically, we found that a good
balance is achieved when ω = 1/4.

Algorithm 2 recaps the batched stroke selection process, where
we use {S,Sb} to denote the union of the sets S and Sb. There are
a number of differences with Algorithm 1. First, at each iteration
of the outer loop, we initialize a set S′r of strokes (r standing for
“removed”) that keeps track of all the strokes that have already been
considered. The innermost loop looks for a stroke that has not yet
been considered (i.e., in S′ \S′r) that can be added according to the
AABB criterion. Once it is found, it is not directly added to the
set of selected strokes, but instead to Ŝb, the batch set of selected
strokes. Only when the batch has been fully processed do we add
its selected strokes to Ŝ and update the density.

Algorithm 2: Batched stroke distribution synthesis.

Input: S′1, S′2, D⋆, L⋆
1/2, L⋆, Ŝ, γ, ω

Output: Ŝ
1 begin
2 repeat
3 C(S′) = ∑iD⋆(x′i), ∀S′ ∈ {S′1∪S′2}
4 Ŝb←∅
5 S′r ←∅
6 repeat
7 if L({Ŝ1, Ŝb1})≤ L⋆

1/2 L({Ŝ2, Ŝb2}) then
8 {S′, Ŝb}← {S′1, Ŝb1}
9 else

10 {S′, Ŝb}← {S′2, Ŝb2}
11 strokeFound← False
12 repeat
13 Ŝ← argmaxS′∈S′\S′

r
C(S′)

14 S′r ←S′r ∪ Ŝ
15 if OverlapCount (Ŝ, Ŝb) < γ C(Ŝ) then
16 strokeFound← True

17 until strokeFound or S′ = S′r
18 if strokeFound and C(Ŝ)> 0 then
19 Ŝb← Ŝb∪ Ŝ
20 S′←S′ \ Ŝ
21 else
22 break

23 until L(Ŝb1)+L(Ŝb2)≥ ω L⋆ or L(Ŝ ∪ Ŝb)≥ L⋆

24 if Ŝb ̸= ∅ then
25 Ŝ ← Ŝ ∪ Ŝb

26 D⋆←D⋆−DŜ, ∀Ŝ ∈ Ŝb

27 until L(Ŝ)≥ L⋆ or Ŝb = ∅
28

29 Function OverlapCount(Ŝ, S):
30 n← 0
31 forall S ∈ S do
32 if AABB(Ŝ)∩AABB(S) ̸= ∅ then
33 n← n+1

34 return n
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