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Abstract

The planning of digital orthodontic treatment requires pro-001
viding tooth alignment, which relays clinical experiences002
heavily and consumes a lot of time and labor to determine003
manually. In this work, we proposed an automatic tooth004
alignment neural network based on Swin-transformer. We005
first re-organized 3D point clouds based on dental arch006
lines and converted them into order-sorted multi-channel007
textures, improving both accuracy and efficiency. We then008
designed two new orthodontic loss functions that quantita-009
tively evaluate the occlusal relationship between the upper010
and lower jaws. They are important clinical constraints,011
first introduced and lead to cutting-edge prediction accu-012
racy. To train our network, we collected a large digital013
orthodontic dataset in more than 2 years, including vari-014
ous complex clinical cases. We will release this dataset af-015
ter the paper’s publishment and believe it will benefit the016
community. Furthermore, we proposed two new orthodon-017
tic dataset augmentation methods considering tooth spatial018
distribution and occlusion. We compared our method with019
most SOTA methods using this dataset, and extensive abla-020
tion studies and experiments demonstrated the high accu-021
racy and efficiency of our method.022

1. Introduction023

Tooth correction, medically known as orthodontics[32],024
primarily involves the use of metal braces[9] or clear025
aligners[18] to alleviate or rectify the conditions of den-026
tal misalignment and malformation. With the widespread027
adoption of digital acquisition technologies, computer-aided028
alignment design has been paid extensive attention, such as029
those based on intraoral scanners[35] and cone-beam com-030
puted tomography (CBCT)[2]. 3D tooth models are ini-031
tially segmented individually[16, 24, 45, 46], and then repo-032
sitioned by the clinician considering various alignment fac-033
tors such as the extent of dental protrusion, dental skeletal034
relationship, and periodontal conditions of the patient, etc.035

It heavily relies on the clinical expertise of orthodontists and 036
is time-consuming, thereby significantly increasing the du- 037
ration and cost of orthodontic treatment planning. 038

With the advancement of artificial intelligence, 039
learning-based methods for tooth alignment are emerg- 040
ing rapidly[20], aiming at achieving fully automated tooth 041
alignment. Among these methods, PointNet-based[33] ones 042
are particularly representative[21, 23, 25, 44]. TANet[44] 043
employs PointNet to construct a feature extraction module, 044
encoding both jaw global information and teeth local 045
information, and utilizes MLP to design regressors for pre- 046
dicting the position of each tooth. PSTN[23] utilizes both 047
PointNet[33] and PointNet++[34] for feature encoding, 048
refining features based on a combination of local and global 049
latent vectors to regress tooth transformation parameters. 050
TAligNet[25], also based on PointNet encoders and MLP 051
decoders, employs Squeeze-and-Excitation Blocks[13] and 052
shared FC sequences for feature propagation to predict 053
alignment parameters. 054

PointNet-based tooth alignment prediction methods 055
showed great potential, but limitations have been revealed 056
in representing local features of point clouds[40] recently. 057
This paper introduces a more advanced shift window trans- 058
former (referred to as Swin-T). It incorporates sliding win- 059
dow operations and hierarchicalmerging design on the foun- 060
dation of traditional vision transformers, addressing issues 061
such as lower precision due to the variability of objects, 062
excessive pixel count leading to high computational com- 063
plexity, and low computational efficiency encountered in 064
transformer-based methods. As teeth share similar sizes 065
and structures, they are sampled into uniformly sized 3D 066
point clouds and transformed into regular multi-channel 067
data, forming ordered data. Building upon this data organi- 068
zation, this paper proposes a multi-level channel compres- 069
sion structure based on Swin-T (SWTBS) and an SWTP 070
module to respectively extract global information of tooth 071
centers and local information of tooth point clouds. Benefit- 072
ing from the performance optimization of shift windows and 073
communication between windows, features of individual 074
teeth can mutually inform one another, gradually expand- 075
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ing the receptive field and exhibiting excellent global con-076
trol over entire dental arches[14], thereby achieving higher077
prediction accuracy.078

We have collected a dataset of 855 orthodontic align-079
ment plans in two years, to be released with the paper080
and source code. We also introduce constraint data aug-081
mentation during preprocessing, evaluated in our experi-082
ments. Our dataset, consisting of manually aligned initial083
tooth models, offers two advantages over previous meth-084
ods using intraoral scan data: (1) the aligned labels corre-085
spond directly with the original scan data, avoiding complex086
point cloud matching, and (2) dentists’ manual alignment087
is considered a more reasonable ground truth than post-088
orthodontic scan data.089

To summarize, our contributions are as follows:090

• A lightweight tooth alignment network based on Swin-T091
is designed to replace traditional 3D point cloud feature092
extraction encoders. It organizes scattered point clouds093
into regularly sized and orderly sorted multi-channel tex-094
ture forms, ensuring high efficiency and seamless com-095
patibility with complex scenarios such as missing teeth096
and wisdom teeth, surpassing the accuracy of the SOTA097
method in tooth alignment.098

• Two occlusal loss functions, the occlusal projecting over-099
lap loss and occlusal distance uniformity loss, are de-100
signed based on medical domain knowledge. These func-101
tions enable more accurate and efficient quantitative mea-102
surement for the occlusal relationship between the upper103
and lower jaws.104

• An extensively annotated orthodontic alignment dataset,105
tailored to better suit the requirements of orthodontists,106
has been labeled. It will be released after the paper’s pub-107
lishment and benefits the community. Additionally, two108
new orthodontic data augmentation methods considering109
tooth spatial distribution and occlusion are proposed to110
further increase the scale of training data.111

2. Related Works112

2.1. Learning-based tooth alignment113

Existing AI tooth alignment methods primarily use 3D point114
cloud data as input, rather than mesh or voxel data[27, 49].115
Early AI tooth alignment methods were mainly based on the116
PointNet[33] structure and its derivatives. TANet[44] uti-117
lizes PointNet[33] to encode the point cloud features of in-118
traoral scan segmentationmodels, including global and local119
features. It then employs graph neural networks to connect120
and communicate tooth local features, regressing the 6DOF121
information[41] of teeth. PSTN[23] uses PointNet[33] to122
encode global and local features and PointNet++[34] to en-123
code local features. After fusion, it uses a decoder de-124
signed based on PointNet[33] to regress orthodontic trans-125
formations of teeth. TAligNet[25] achieves feature extrac-126

tion of 3D tooth models and tooth arrangement. It utilizes 127
PointNet[33] as the feature encoder and employs fully con- 128
nected layer sequences and SE blocks[13] for feature prop- 129
agation, finally using fully connected layers to regress rota- 130
tion and translation. 131

Besides PointNet, recent AI tooth alignment meth- 132
ods also adopted emerging network structures such as 133
DGCNN[43] and diffusion models[12]. Wang et al. 134
proposed an improvement to TANet using tooth land- 135
marks, where DGCNN was utilized to extract point cloud 136
information[40]. They proposed a hierarchical regression 137
using a three-layer graph neural network structure[36] to 138
better predict the displacement transformation of each tooth, 139
the landmark serves as a component of the tooth frame. 140
TAPoseNet employed DGCNN to predict the local coordi- 141
nate axes of teeth and utilized an autoencoder to extract geo- 142
metric information[5]. Additionally, they proposed a multi- 143
scale GCN[50] to characterize the spatial relationships be- 144
tween teeth at different levels, enabling more accurate pre- 145
diction of the target positions of teeth. LETA[37] extracts 146
features through latent encoding of dual branches (original 147
data & ground truth), and predicts 6DoF of teeth by utiliz- 148
ing encoding differences. During training, GT point clouds 149
are required, while only original point clouds are needed to 150
complete prediction. 151

Lei et al. employed probabilistic diffusion models[38] 152
to iteratively denoise random variables, learning the dis- 153
tribution of transformation matrices for dental transitions 154
from malocclusion to normal occlusion, thus achieving 155
more realistic orthodontic predictions[21]. Furthermore, the 156
network structure of TAligNet mentioned above was ac- 157
tually proposed in image-based tooth alignment methods, 158
iOrthoPredictor[25], which utilize three-dimensional geo- 159
metric information encoded in the unsupervised generative 160
model StyleGAN[15]. Through meaningful paths in latent 161
space normals, alignment processes in image space are gen- 162
erated. Due to the complexity of the occlusal action between 163
the upper and lower teeth, the calculation methods based on 164
angles or center points have large errors and limited effec- 165
tiveness, thus having deficiencies. 166

2.2. Shift window transformer 167

Transformers[39] have achieved major advancements in 168
NLP[29] and computer vision domains[19]. Vision Trans- 169
former (ViT)[6] directly applies self-attention to image 170
patches, achieving strong results in classification without 171
CNNs[17]. Swin-T[26] builds on ViT with movable win- 172
dows, limiting sub-attention to non-overlapping local re- 173
gions for greater efficiency. Swin3D[51] adapts Swin-T for 174
3D point clouds, converting sparse points into voxel grids 175
and using farthest point sampling (FPS)[8, 28] and KNN 176
pooling[22], though this is computationally intensive and 177
misses advantages from serializing relative positions. Our 178
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Figure 1. Network architecture overview. The encoding module has two branches: one for global features from the tooth center and one
for local features from the tooth point cloud. Global features are extracted using SWTBS with shared Swin-T blocks, while local features
are processed via SWTP with multi-stage hierarchical fusion. The features are merged, passed through SWTBS propagation, and then
regressed by an MLP to predict the 6DOF transformation parameters for orthodontics

approach enhances the multi-level fusion network in Swin-179
T[26] by using sliding windows to reduce data size layer by180
layer, optimizing efficiency and expanding global receptive181
fields. We use FPS[28] to uniformly sample and structure182
each tooth’s data, avoiding direct KNN downsampling as183
in[53] and[47], to improve information propagation.184

3. Methodology185

3.1. Network overview186

We segment the patient’s intraoral scan model to obtain the187
gingival point cloud G and crown point clouds T for 32188
teeth. These include up to 16 upper teeth (numbered 1 to 16)189
and 16 lower teeth (numbered 17 to 32), following the uni-190
versal tooth naming standard. Missing teeth are discussed191
in Section 3.2. To ensure training efficiency, farthest point192
sampling[30] is applied with N = 512 to balance sampled193
point quantity and network performance.194

T = {ti|1 ≤ i ≤ 32} (1)195
196

P = {pt
j |t ∈ T, 1 ≤ j ≤ 512} (2)197

Each tooth’s centroid is defined as Ct, where ct is the198
geometric centroid of the sampled point cloud Pt.199

Ct = {ct|t ∈ T, ct = Ave
p∈Pt

(p)} (3)200

The goal of this study is to predict the 6Dof[7] pose201
transformation parameters for each tooth model, using both202
pre/post-orthodontic data. To ensure accurate loss calcu-203
lation during training, the dataset includes corresponding204
ground truth data P ∗

t , with consistent sampling positions205
and orders for Pt and P ∗

t .206

Figure 2. SWTBS module: Four groups of shared Swin-T blocks,
each with 16 channels, with residuals added to the final output.

This paper proposes a dual-module architecture for fea- 207
ture extraction, as illustrated in Figure 1. The global module 208
encodes tooth center points usingMLP layers and positional 209
encoding, followed by Swin-T blocks (SWTBS) to produce 210
fc. The local module processes the 3D tooth point cloud 211
through the Swin transformer pipeline (SWTP), producing 212
ft. After pooling and merging ft with fc, the resulting high- 213
dimensional vectorF = {fc, ft} is processed by SWTBS to 214
yield fx, enhancing feature optimization. Finally, a down- 215
sampling regression module obtains the 6DoF transforma- 216
tion parameters for orthodontics. 217

The tooth point cloud is processed through hierarchi- 218
cal downsampling, similar to the Swin Transformer[26], in- 219
volving patch partitioning and feature merging across four 220
stages, as shown in Figure 3. Unlike the original network, 221
we keep the channel count constant to prevent excessive 222
feature dimension and loss during MLP conversion. Data 223
columns, rather than rows, are merged during feature pro- 224
cessing, as the first dimension represents the number of 225
teeth, and each tooth’s rotations and translations are unique. 226
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Figure 3. SWTP module, featuring a multi-stage feature fusion
mechanism.

Figure 4. Points cloud are serialized according to their distance
from simulated dental arch line, values on lingual side set as posi-
tive while labial side set as negative.

3.2. Data re-organization and augmentation227

We designed a serialization method based on a simulated228
dental arch line, created by fitting central points from a229
tooth segmentation model and connecting them with Her-230
mite curves. Points are sorted by their distance from the231
arch, with labial points positive and lingual points negative.232
Results in Figure 4 maintain relative positions among the233
512 sampled points, improving network performance.234

Regular data augmentation applies random rotation and235
translation on teeth based on a Gaussian distribution. It236
generates pre-orthodontic data while preserving the ground237
truth as post-orthodontic data. However, regular augmenta-238
tion may produce clinical-illogical cases, including too far239
away from the arch lines and teeth collision. For this sake,240
we propose a constrained data augmentation that involves241
two relevant clinical constraints:242

3.2.1. Jaw regularization constraint243

If the distance between two teeth exceeds 2.35 mm, the far-244
ther tooth is moved towards the central incisor along the245
dental arch line until the gap is within the threshold, as246
shown by the red teeth in Figure 5. Teeth exceeding 2.2247
mm from the arch are pulled inward, as shown by the blue248
teeth, based on dataset statistics. Our strategy is to move249
the distal tooth towards the mesial tooth, specifically in the250
direction of the central incisor until the inter-tooth gap is251
within the threshold. This approach minimizes large gaps252
in the augmented dataset, ensuring more reasonable data. If253
the movement increases inter-tooth distance in the opposite254
direction or causes tooth collisions, the method in Section255
3.2.2 is used for detection and avoidance, all along the sim-256
ulated dental arch line.257

Figure 5. The maxillofacial regularization corrects excessive gaps
or deviations based on dataset statistics.

3.2.2. Collision detection constraints 258

We use a BVH collision detection algorithm[10, 31] to de- 259
tect collisions and identify the colliding parts. Upon colli- 260
sion, the simulated dental arch line is used to avoid inter- 261
locking while preserving the arch shape. 262

For the efficiency purpose, we parallelize the BVH con- 263
struction with a tooth-wise multi-threaded acceleration. It is 264
worth noting that the BVH construction and collision detec- 265
tion are only employed in the pre-processing stage, which 266
has more tolerance on the performance. 267

It is worth mentioning that missing teeth are specially 268
handled, thus have very limited impact on both serialization 269
and data augmentation. ThoughMissing teeth will affect the 270
feature extraction in a single window, the impact is negligi- 271
ble for the sliding window that moves in the data. 272

3.3. Loss functions 273

The global loss function of the network consists of four com- 274
ponents, the latter two are specifically designed in this paper 275
to address dental occlusion. Each part of the loss function 276
will be elaborated in the following part of this subsection. 277

L = δ0 ∗ Lrecon + δ1 ∗ Lfit + δ2 ∗ Luni + δ3 ∗ Lval (4) 278

The hyperparameters δ0, δ1, δ2 and δ3 are used to weight 279
each component accordingly. 280

3.3.1. Reconstruction loss 281

We utilized the model reconstruction loss mentioned in[40]. 282
Different from[40], the post-orthodontic data in our dataset 283
was manually adjusted by orthodontists using the pre- 284
orthodontic data. Therefore, the vertex positions and orders 285
of the models before and after orthodontic treatment are cor- 286
respond. 287

Lpoint
recon =

∑
t∈T

 ∑
i=0,p∈Pt

||pi − p∗
i ||22 + ||ct − c∗

t ||22

 (5) 288

3.3.2. Transformation parameter loss 289

The transformation parameter loss comprises two compo- 290
nents: rotation loss and translation loss. We computes 291
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Figure 6. Visualization of the occlusion projection range.

weights for each tooth during training, based on the mag-292
nitude of misalignment. These weights are cumulatively293
added to the original loss, as shown in Equation 7 & 8.294
Drawing from[52], we emphasize that more severe mis-295
alignments should receive greater attention, corresponding296
to larger loss values.297

Lval = ω ∗ Lrotate + Ltrans (6)298

Lrotate =
∑
t∈T

[
3∑

i=0

L1

(
rotatet(i), rotate

∗
t (i)
)

∗
(

1.0 + ζ
rotate
t

)]
(7)299

Ltrans =
∑
t∈T

[
2∑

i=0

L1

(
transt(i), trans

∗
t (i)
)

∗
(

1.0 + ζ
trans
t

)]
(8)300

Due to the relatively small numerical values of rotation301
loss, an additional parameter w is introduced to amplify the302
impact of quaternion rotation loss during actual training.303

3.3.3. Occlusal projecting overlap304

Occlusion projection range consistency loss represents305
whether the interocclusal region between the predicted re-306
sults of upper and lower jaws matches the ground truth. The307
definition of occlusion projection range is as follows: Let308
tooth t in one jaw have a corresponding area βt in the op-309
posite jaw. Project all points of t and βt onto the occlusal310
plane.311

mi = Argmin
pj∈P f

βt

∥pi − pj∥2 , pi ∈ P f
t (9)312

If the closest distance between points from t’s point cloud313
and β’s point cloud (on the occlusal plane) is less than a314
threshold τ , then points from t’s point cloud within this dis-315
tance are considered part of t’s occlusion projection range.316
We introduce the concept of occlusion projection range to317
bring predicted results closer to the ground truth at the oc-318
clusion projection range level. In the Figure 6, P f

t rep-319
resents the point cloud of tooth t projected onto the oc-320
clusal plane, P f

βt
represents the point cloud of region βt pro-321

jected onto the occlusal plane, andmi denotes the minimum322

(a) Aligned (b) Misaligned

Figure 7. An illustration of occlusal distance uniformity. The vari-
ation of occlusion distances (blck dotted lines) in aligned scenarios
(a) is much smaller than the one in misaligned scenarios (b).

two-dimensional plane distance between a point pi from the 323
point cloud of t and the nearest point pj from the point cloud 324
of βt. 325

τ is the threshold used to divide the occlusion projection 326
range. X is a binary sequence where Xt(i) records whether 327
point pi from the point cloud of tooth t belongs to the occlu- 328
sion projection range based on the relationship between mi 329
and τ . If mi is less than τ , then Xt(i) takes the value of 1; 330
otherwise, it takes the value of 0. 331

Lfit = Ave
t∈T

(
n−1∑
i=0

∣∣Xt(i) − X∗
t (i)

∣∣) (10) 332

3.3.4. Occlusal distance uniformity 333

Due to the completely different morphologies and occlu- 334
sion patterns between anterior and posterior teeth, we have 335
proposed distinct loss function designs for anterior and pos- 336
terior teeth based on discussions in [1, 4, 11]. Therefore, 337
the occlusal distance uniformity loss Luni across upper and 338
lower jaws is composed of two parts: Lant

uni for anterior teeth 339

andLpior
uni for posterior teeth. As shown in the following for- 340

mula, we introduce a weighting parameter wpior to balance. 341

Luni = Lant
uni + wpior · Lpior

uni (11) 342

This paper evaluates the consistency and similarity of 343
vectors connecting corresponding points in the occlusal re- 344
gions of posterior teeth, based on the projection ambiguity 345
constraint discussed in[4]. The occlusal distance uniformity 346
is calculated within the occlusal projection range defined in 347
Section 3.3.3. For a point pi in the occlusal projection range 348
of tooth t, the distance to the nearest point pj in the corre- 349
sponding range βt on the opposing jaw is denoted as d, and 350
the collection of all such distances forms set D. The unifor- 351
mity ofD represents the degree to which the occlusal ranges 352
match concavely or convexly, defining the occlusal distance 353
uniformity loss function for posterior teeth. 354
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Lpior
uni =

∑
t∈Tpior

V ar
Xt(i)=1

(
min

Xβt (j)=1
∥pi − pj∥2

)
(12)355

Due to the more prominent crowns of the upper incisors,356
their shape differs significantly from the molars, so the dis-357
tance uniformity calculation method for molars cannot be358
applied. Based on the upper and lower anterior tooth corre-359
spondence described in[1, 11], we propose the vertex coor-360
dinate difference and angular difference between the tooth361
axis vector and the ground truth, denoted as Lant1

uni and362
Lant2

uni , respectively.363

Lant
uni = Lant1

uni + ωant ∗ Lant2
uni (13)364

Peakt and Peak∗
t correspond to the highest incisal365

points in the predicted and ground truth data, respectively.366

Lant1
uni =

∑
t∈Tant

∥∥ct − c∗
t

∥∥
2

+
∑

t∈Tant

∥∥P eakt − P eak∗
t

∥∥
2
(14)367

Lant2
uni =

∑
t∈Tant

arccos

( (
P eakt − ct

)
· (P eak∗

t − c∗
t )∥∥P eakt − ct

∥∥
2

∗ ∥P eak∗
t − c∗

t ∥2

)
(15)368

4. Experiments369

4.1. Dataset pre-processing and evaluation metrics370

Our dataset contains 855 sets of dental data, which are de-371
rived from the 3D models of the upper and lower jaw teeth372
constructed through oral scans. Each set of dental data373
also includes data frommultiple stages during the orthodon-374
tic treatment process, usually divided into about 30 stages.375
We can take the final orthodontic result of each patient376
as the ground tooth, and multiple treatment stages can re-377
spectively form multiple pairs of pre- and post-orthodontic378
data with the ground tooth. These data are first prelimi-379
narily segmented using the semantic segmentation network380
TSegNet[3], and then manually optimized for the mesh and381
edges. The optimized crown models are then aligned and382
arranged by experienced orthodontists to obtain the corre-383
sponding ground truth data. We randomly selected 700 sam-384
ples for training, 35 samples for validation, and the remain-385
ing 120 samples for testing. Our labeled data do not come386
from the intraoral scan after orthodontic, because this would387
introduce differences in topology aspects on points before388
and after treatment.389

Weused anNVIDIAGeForce RTX 3090 (24GBVRAM)390
for 500-epoch training (batch size 8). Set N=512, initial391
learning rate 1.5e-4, w for the rotation loss in the transfor-392
mation parameter loss was set to 10.0, The threshold τ in393
Section 3.3.3 was empirically set to 0.07mm, shift window394
size 8×8. Our evaluation metrics used ADD/AUC from395
TANet[44] and landmark[40].396

Table 1. Comparison of evaluation metrics between the proposed
method and the SOTA method. Note that * represents the effect of
our method on the dataset[42].

Model Test result
ADD ↓ ADD/AUC ↑ MErotate ↓ MEtranslate ↓

TAligNet 1.5307 0.72 7.5461 2.0392
TANet 1.0075 0.81 6.9274 1.6815
PSTN 1.5889 0.71 8.6938 2.2155
Ptv3 1.2136 0.78 7.0663 1.7581

Landmark 0.8139 0.84 7.8277 1.3764
TADPM 1.1815 0.76 7.7426 1.7351
Ours* 0.8115 0.84 2.9338 1.5904
Ours 0.6584 0.89 2.7678 1.1584

4.2. Comparisons with SOTA methods 397

We tested the performance of some advanced methods on 398
our dataset, including TANet[44], PSTN[23], TAligNet[25], 399
Landmark[40], and TADPM[21]. Among them, the results 400
of Landmark were obtained by the Wang et al. when they 401
ran our dataset. We debugged the open-source code released 402
by Lei et al. and reformatted our dataset according to the 403
dataset format they published[42] to obtain the test results of 404
TADPM. Although due to the limitations of the equipment, 405
we used a more simplified dental mesh model and a smaller 406
batch size, which may lead to some differences compared 407
with the results published by Lei et al.[21], conducting the 408
training and testing on the same hardware allows for a more 409
rigorous comparison of the performance of all the methods. 410
In addition, we processed their dataset into our format and 411
conducted training and testing using our method, as shown 412
in Table 1. 413

Training and testing data and specifications were consis- 414
tent with Section 4.1. We compared ADD/AUC, average 415
rotation error, and average translation error. Table 1 shows 416
that our method performs best in all aspects, whether for 417
AUC or rotational and translational deviations. Addition- 418
ally, compared with the TADPM method, during the train- 419
ing and testing process, our method takes much less time to 420
process a single case. Moreover, under the same time and 421
equipment conditions, the quality of our method is better. 422

We compared the curves of average point distances, as 423
shown in Figure 8. It is evident from the figure that our 424
method achieves the highest accuracy under different defi- 425
nitions of average point distance. It is noteworthy that be- 426
yond an average point distance of 2.5, all curves converge 427
to nearly 1.0. Therefore, the chart only displays curves for 428
k ≤ 2.5. 429

Figure 9 shows aligned tooth models achieved by our 430
method versus others, with views from the front, side, and 431
top. Our occlusal projection range alignment loss and oc- 432
clusal distance uniformity loss help correct upper-lower jaw 433
gaps and occlusal misalignment better than Chamfer vector 434
loss. Landmarks improve focus on joint points, resolving 435
misaligned gaps. Additionally, data serialization ensures ac- 436
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Figure 8. Comparison of accuracy curves between the proposed
method and the SOTA method.

Table 2. Ablation experiment results of loss functions, testing the
impact of different loss function combinations on final test results.

Loss fuc Test result
ADD/AUC ↑ MErotate ↓ MEtranslate ↓

Lrecon 0.64 9.6 2.7
Lval 0.62 10.5 3.1

Lrecon + Lval 0.79 8.3 2.2
Lrecon + Lval + Luni 0.81 5.9 1.7
Lrecon + Lval + Lfit 0.83 5.3 1.4

Lrecon + Lval + Luni + Lfit 0.89 2.7 1.1

curate recognition of inter-tooth positions, even with incom-437
plete models, effectively handling issues with wisdom teeth438
and intra-jaw misalignment.439

4.3. Visual results with complex cases440

Figure 10 shows a comparison of our tooth alignment re-441
sults. It can be seen that our method produces very neat442
alignments even in complex situations such as large gaps,443
crossbite, and triangular tooth arrangements. The introduc-444
tion of serialization enhances the transformer’s ability to445
perceive the positions of teeth within the jaw, and the shift446
window efficiently extracts local features of the teeth, sup-447
ported by a comprehensive combination of loss functions.448
And our network specifying a maximum of 16 teeth per jaw,449
can handle cases with wisdom teeth or missing teeth.450

4.4. Ablation study451

4.4.1. Loss functions452

We discussed several loss functions in Section 3. Results453
of ablation experiments validating their effectiveness are454
as follows. Model reconstruction and transformation pa-455
rameter losses are effective. Our proposed occlusal losses456
improve prediction accuracy based on medical principles,457
which ensures that the upper and lower jaws are closely458
aligned according to natural occlusion laws and gradually459
move to their correct positions, despite longer training time.460

4.4.2. Network architecture461

Table 3 shows that using the tooth center feature module, es-462
pecially SWTBS, yields better accuracy, as Swin-T’s sliding463

Table 3. Ablation experiment results of network architecture.
Methods w/o SWTP ADD/AUC ↑ MErotate ↓ MEtranslate ↓
VTBS ✓ 0.79 7.10 1.83
PTv3 ✓ / / /

SWTBS(Ours) ✓ 0.90 2.70 1.10

VTBS × 0.75 8.50 2.20
PTv3 × 0.73 9.80 2.40

SWTBS(Ours) × 0.81 7.20 2.00

Table 4. Ablation experiment results of serialization.
Serialization Function Test result

ADD/AUC ↑ MErotate ↓ MEtranslate ↓
Random Order 0.77 6.1 1.9

Based on dental local z-axis 0.80 5.4 1.7
Based on dental arch center 0.82 5.6 1.3
Based on virtual arch line 0.89 2.7 1.1

window and merging mechanisms enhance point cloud fu- 464
sion. Without SWTP, accuracy decreases across modules, 465
showing that SWTP’s multi-stage architecture better cap- 466
tures global features. Using PTv3 alone further reduces per- 467
formance due to lacking mechanisms like sliding windows, 468
critical for effective inter-tooth feature extraction. 469

It can be observed that compared to network structures 470
using only Swin blocks or Vision blocks, the multi-stage 471
Swin block structure yields higher accuracy. This is because 472
the multi-stage approach reduces the size of the latent vector 473
progressively through dimensional merging, which is more 474
effective in retaining task-specific dental features than di- 475
rectly passing down through averaging. 476

4.4.3. Point cloud serialization 477

We discussed sorting points of individual teeth for input into 478
the Swin-T multi-layer feature fusion module in Section 3. 479
Serialization ensures points selected by the window corre- 480
sponds to the same local region of the teeth, can better ex- 481
tract relative position features between teeth[48]. 482

As shown in Table 4, the random sorting method was 483
worst as it couldn’t use sequential information to boost the 484
transformer’s performance. Sorting by the local Z-axis of 485
the teeth had sequence benefits and better performance, but 486
it was still not enough because of multi-peaked tooth crowns 487
(common in posterior teeth), making sequentially arranged 488
points in different local regions. The center-point-based 489
sorting method solved this problem but had angular devia- 490
tions for posterior teeth since the teeth are U-shaped. Our 491
method based on the simulated dental arch curve for U- 492
shaped jaws achieved best prediction results. 493

4.4.4. Data augmentation 494

Our constrained data augmentation increases training the 495
data scale, but excessive augmentation may lead to network 496
distortion. To avoid it, we restrict the mount of augmented 497
cases. Figure 11 shows the perdiction accuracy with vary- 498
ing augmentation ratio of augmented cases to original ones, 499
it reaches the peak when the ratio is 54%. The accuray 500

7
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Figure 9. Comparison of prediction results between the proposed method and other methods. Here, four typical and challenging orthodontic
problems are selected, listed from top to bottom: large gap, malocclusion, fragmentary crown, and jaw malposition.

Figure 10. The figure shows the alignment prediction results of
our method on 6 data cases in 6 columns.

of regular augmentation reaches the peak when the ratio is501
62%. We compared our constrained augmentation with reg-502
ular augmentation, on both source data and target data. Ta-503
ble 5 shows accuracy statistics with these scenarios, it gives504
two insights: (1) constraint augmentation contributes more505
significantly than regular augmentation, as regular augmen-506
tation ignores clinical requirements and introduces more bi-507
ases, and (2) augmentation on target data provides better508
training quality than source data.509

5. Conclusions510

This paper proposes a novel, high-precision and efficient511
neural network approach for tooth alignment prediction. It512

(a) Constrained augmentation (b) Regular augmentation

Figure 11. The effect of data augmentation intensity on final pre-
diction accuracy (blue curves) and training convergence speed (or-
ange curves).

Table 5. Ablation experiment results of data augmentation.
Augmentation ADD/AUC ↑ ETL = 10 ↓ SigAugT ime ↓

None 0.83 145 /

Source Data Regular 0.84 125 0.84
Constrained 0.86 141 3.53

Target Data Regular 0.85 109 0.84
Constrained 0.90 134 3.51

uses the multi-level feature fusion structure of Swin-T as 513
its core, supplemented by a tooth center feature extraction 514
module that emphasizes global features. Two occlusion 515
evaluation loss functions are designed to effectively 516
describe the occlusal relationships between upper and 517
lower jaws. Furthermore, this paper constructed a open 518
dataset in the field of tooth arrangement. This dataset 519
includes over 855 fully annotated data pairs, consisting 520
of point clouds sampled from tooth crowns, address- 521
ing the issue of a lack of public datasets in this field. 522
A new constrained augmentation method is proposed 523
to further augment the datasets. For future work, we 524
plan to consider other stomatologic constraints for the 525
tooth alignment task, and predict the full path of the 526
tooth orthodontic treatment instead of the target position. 527

528

8
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